Georg Northoff , Andrea Buccellato , Federico Zilio
{"title":"Connecting brain and mind through temporo-spatial dynamics: Towards a theory of common currency","authors":"Georg Northoff , Andrea Buccellato , Federico Zilio","doi":"10.1016/j.plrev.2024.11.012","DOIUrl":null,"url":null,"abstract":"<div><div>Despite major progress in our understanding of the brain, the connection of neural and mental features, that is, brain and mind, remains yet elusive. In our 2020 target paper (“Is temporospatial dynamics the ‘common currency’ of brain and mind? Spatiotemporal Neuroscience”) we proposed the “Common currency hypothesis”: temporo-spatial dynamics are shared by neural and mental features, providing their connection. The current paper aims to further support and extend the original description of such common currency into a first outline of a “Common currency theory” (CCT) of neuro-mental relationship. First, we extend the range of examples to thoughts, meditation, depression and attention all lending support that temporal characteristics, (i.e. dynamics) are shared by both neural and mental features. Second, we now also show empirical examples of how spatial characteristics, i.e., topography, are shared by neural and mental features; this is illustrated by topographic reorganization of both neural and mental states in depression and meditation. Third, considering the neuro-mental connection in theoretical terms, we specify their relationship by distinct forms of temporospatial correspondences, ranging on a continuum from simple to complex. In conclusion, we extend our initial hypothesis about the key role of temporo-spatial dynamics in neuro-mental relationship into a first outline of an integrated mind-brain theory, the “Common currency theory” (CCT).</div></div>","PeriodicalId":403,"journal":{"name":"Physics of Life Reviews","volume":"52 ","pages":"Pages 29-43"},"PeriodicalIF":13.7000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Life Reviews","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1571064524001519","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite major progress in our understanding of the brain, the connection of neural and mental features, that is, brain and mind, remains yet elusive. In our 2020 target paper (“Is temporospatial dynamics the ‘common currency’ of brain and mind? Spatiotemporal Neuroscience”) we proposed the “Common currency hypothesis”: temporo-spatial dynamics are shared by neural and mental features, providing their connection. The current paper aims to further support and extend the original description of such common currency into a first outline of a “Common currency theory” (CCT) of neuro-mental relationship. First, we extend the range of examples to thoughts, meditation, depression and attention all lending support that temporal characteristics, (i.e. dynamics) are shared by both neural and mental features. Second, we now also show empirical examples of how spatial characteristics, i.e., topography, are shared by neural and mental features; this is illustrated by topographic reorganization of both neural and mental states in depression and meditation. Third, considering the neuro-mental connection in theoretical terms, we specify their relationship by distinct forms of temporospatial correspondences, ranging on a continuum from simple to complex. In conclusion, we extend our initial hypothesis about the key role of temporo-spatial dynamics in neuro-mental relationship into a first outline of an integrated mind-brain theory, the “Common currency theory” (CCT).
期刊介绍:
Physics of Life Reviews, published quarterly, is an international journal dedicated to review articles on the physics of living systems, complex phenomena in biological systems, and related fields including artificial life, robotics, mathematical bio-semiotics, and artificial intelligent systems. Serving as a unifying force across disciplines, the journal explores living systems comprehensively—from molecules to populations, genetics to mind, and artificial systems modeling these phenomena. Inviting reviews from actively engaged researchers, the journal seeks broad, critical, and accessible contributions that address recent progress and sometimes controversial accounts in the field.