Kenneth M. Clarke , Michael Groeber , John Wertz , Andrew Abbott , Roneisha Haney , Michael Chapman
{"title":"Characterization of Direct Ink Writing carbon fiber composite structures with serial sectioning and DREAM.3D","authors":"Kenneth M. Clarke , Michael Groeber , John Wertz , Andrew Abbott , Roneisha Haney , Michael Chapman","doi":"10.1016/j.compstruct.2024.118730","DOIUrl":null,"url":null,"abstract":"<div><div>Direct Ink Writing (DIW) combines the flexibility of 3D printing with increased material applications such as thermoset carbon fiber composites, ceramic composites, and metals. The usefulness of direct ink writing, like many additive manufacturing (AM) processes, remains limited for reasons ranging from quality control to lack of process parameter optimization. This study looks to introduce a methodology for characterizing direct ink written carbon fiber composites to facilitate exploration into the relationships between process parameters and material structure. The presented study utilized nine 3D specimens of direct ink writing carbon fiber composites printed with varying process parameters – speed differential, layer height, step-over distance, and nozzle diameter – as the data set. The data was collected with an automatic serial sectioning system, LEROY, from the Air Force Research Laboratory. The collected data was processed in DREAM.3D and analyzed with statistical comparisons of 2D orientation distributions of the fibers, 2D size distributions of the voids, and 2D shape distributions of the voids.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"353 ","pages":"Article 118730"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008584","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Direct Ink Writing (DIW) combines the flexibility of 3D printing with increased material applications such as thermoset carbon fiber composites, ceramic composites, and metals. The usefulness of direct ink writing, like many additive manufacturing (AM) processes, remains limited for reasons ranging from quality control to lack of process parameter optimization. This study looks to introduce a methodology for characterizing direct ink written carbon fiber composites to facilitate exploration into the relationships between process parameters and material structure. The presented study utilized nine 3D specimens of direct ink writing carbon fiber composites printed with varying process parameters – speed differential, layer height, step-over distance, and nozzle diameter – as the data set. The data was collected with an automatic serial sectioning system, LEROY, from the Air Force Research Laboratory. The collected data was processed in DREAM.3D and analyzed with statistical comparisons of 2D orientation distributions of the fibers, 2D size distributions of the voids, and 2D shape distributions of the voids.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.