A multi-scale uncertainty analysis method based on the Hermite–Chebyshev polynomials for dynamic responses of FRP composite structures with hybrid uncertainties
{"title":"A multi-scale uncertainty analysis method based on the Hermite–Chebyshev polynomials for dynamic responses of FRP composite structures with hybrid uncertainties","authors":"Sheng-Yu Qian , Xiao-Yi Zhou , Neng-Wei Wang","doi":"10.1016/j.compstruct.2024.118713","DOIUrl":null,"url":null,"abstract":"<div><div>Multi-scale hybrid uncertainties in material properties of FRP composites stemming from their manufacturing processes present significant challenges for dynamic analysis and reliability assessment. This paper proposes a multi-scale uncertainty surrogate model based on Hermite–Chebyshev polynomials. The relationship between micro- and macro-scale material properties is established using the Mori–Tanaka method. To demonstrate the efficacy of the proposed method, case studies are conducted on both a FRP wide-flange I-beam structure and a FRP truss bridge. Results indicate that this method accurately determines the probability density functions and cumulative distribution functions of natural frequencies and mode shapes. Notably, the method efficiently computes the upper and lower bounds of dynamic failure probability of FRP truss bridge with high numerical efficiency.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"353 ","pages":"Article 118713"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008419","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-scale hybrid uncertainties in material properties of FRP composites stemming from their manufacturing processes present significant challenges for dynamic analysis and reliability assessment. This paper proposes a multi-scale uncertainty surrogate model based on Hermite–Chebyshev polynomials. The relationship between micro- and macro-scale material properties is established using the Mori–Tanaka method. To demonstrate the efficacy of the proposed method, case studies are conducted on both a FRP wide-flange I-beam structure and a FRP truss bridge. Results indicate that this method accurately determines the probability density functions and cumulative distribution functions of natural frequencies and mode shapes. Notably, the method efficiently computes the upper and lower bounds of dynamic failure probability of FRP truss bridge with high numerical efficiency.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.