{"title":"Highly singular (frequentially sparse) steady solutions for the 2D Navier–Stokes equations on the torus","authors":"Pierre Gilles Lemarié-Rieusset","doi":"10.1016/j.jfa.2024.110761","DOIUrl":null,"url":null,"abstract":"<div><div>We construct non-trivial steady solutions in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> for the 2D Navier–Stokes equations on the torus. In particular, the solutions are not square integrable, so that we have to introduce a notion of special (non square integrable) solutions.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 4","pages":"Article 110761"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002212362400449X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We construct non-trivial steady solutions in for the 2D Navier–Stokes equations on the torus. In particular, the solutions are not square integrable, so that we have to introduce a notion of special (non square integrable) solutions.
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis