Dispersive solid phase extraction and quadruple isotope dilution–mass spectrometry combination for the accurate and sensitive quantification of capsaicin in pepper, domestic wastewater and human saliva samples by GC–MS system

IF 4.9 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Süleyman Bodur , Sezin Erarpat Bodur , Selim Gürsoy , Merve Fırat Ayyıldız , Bedrihan Kartoğlu , Hilal Akbıyık , Ömer Tahir Günkara , Sezgin Bakırdere
{"title":"Dispersive solid phase extraction and quadruple isotope dilution–mass spectrometry combination for the accurate and sensitive quantification of capsaicin in pepper, domestic wastewater and human saliva samples by GC–MS system","authors":"Süleyman Bodur ,&nbsp;Sezin Erarpat Bodur ,&nbsp;Selim Gürsoy ,&nbsp;Merve Fırat Ayyıldız ,&nbsp;Bedrihan Kartoğlu ,&nbsp;Hilal Akbıyık ,&nbsp;Ömer Tahir Günkara ,&nbsp;Sezgin Bakırdere","doi":"10.1016/j.microc.2024.112246","DOIUrl":null,"url":null,"abstract":"<div><div>In the presented study, reduced graphene oxide/Fe<sub>3</sub>O<sub>4</sub> (rGO/Fe<sub>3</sub>O<sub>4</sub>) nanocomposites based dispersive solid phase extraction (DSPE) – gas chromatography–mass spectrometry (GC–MS) method was developed for the determination of capsaicin in domestic wastewater (DW), pepper (PP) and human saliva (HS) samples. All important parameters of the DSPE method affected the preconcentration factor were carefully optimized to achieve high signal to noise ratio for the analyte. After the optimization studies, the system analytical performance of DSPE-GC–MS system was evaluated using the aqueous standard solution of capsaicin. Limit of detection (LOD), limit of quantitation (LOQ) and dynamic range were figured out to be 0.54 µg/kg, 1.80 µg/kg and 2.66 – 487.35 µg/kg, respectively. Under the optimum experimental conditions, recovery studies were conducted with the spiked DW, PP and HS samples, and percent recovery results were recorded between 52.6 % and 183.6 % via matrix matching calibration strategy. After the implementation of ID<sup>4</sup> strategy, percent recovery results for the spiked DW, PP and HS samples were calculated as 98.2 %–99.3 %, 99.7 %–100.7 % and 99.4 %–99.8 %, respectively. In addition, capsaicin content in Sivri (S)-PP, Kıl (K)-PP and Samandağ (SA)-PP samples were found to be 309.5 ± 11.8 mg/kg, 873.7 ± 26.7 mg/kg and 165.3 ± 5.1 mg/kg via DSPE-GC-ID<sup>4</sup>-MS method, respectively. As a result, the combination of quadruple isotope dilution (ID<sup>4</sup>) strategy and the DSPE-GC–MS method were successfully performed to boost the accuracy and precision of developed DSPE-GC–MS method.</div></div>","PeriodicalId":391,"journal":{"name":"Microchemical Journal","volume":"208 ","pages":"Article 112246"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchemical Journal","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0026265X24023580","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the presented study, reduced graphene oxide/Fe3O4 (rGO/Fe3O4) nanocomposites based dispersive solid phase extraction (DSPE) – gas chromatography–mass spectrometry (GC–MS) method was developed for the determination of capsaicin in domestic wastewater (DW), pepper (PP) and human saliva (HS) samples. All important parameters of the DSPE method affected the preconcentration factor were carefully optimized to achieve high signal to noise ratio for the analyte. After the optimization studies, the system analytical performance of DSPE-GC–MS system was evaluated using the aqueous standard solution of capsaicin. Limit of detection (LOD), limit of quantitation (LOQ) and dynamic range were figured out to be 0.54 µg/kg, 1.80 µg/kg and 2.66 – 487.35 µg/kg, respectively. Under the optimum experimental conditions, recovery studies were conducted with the spiked DW, PP and HS samples, and percent recovery results were recorded between 52.6 % and 183.6 % via matrix matching calibration strategy. After the implementation of ID4 strategy, percent recovery results for the spiked DW, PP and HS samples were calculated as 98.2 %–99.3 %, 99.7 %–100.7 % and 99.4 %–99.8 %, respectively. In addition, capsaicin content in Sivri (S)-PP, Kıl (K)-PP and Samandağ (SA)-PP samples were found to be 309.5 ± 11.8 mg/kg, 873.7 ± 26.7 mg/kg and 165.3 ± 5.1 mg/kg via DSPE-GC-ID4-MS method, respectively. As a result, the combination of quadruple isotope dilution (ID4) strategy and the DSPE-GC–MS method were successfully performed to boost the accuracy and precision of developed DSPE-GC–MS method.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchemical Journal
Microchemical Journal 化学-分析化学
CiteScore
8.70
自引率
8.30%
发文量
1131
审稿时长
1.9 months
期刊介绍: The Microchemical Journal is a peer reviewed journal devoted to all aspects and phases of analytical chemistry and chemical analysis. The Microchemical Journal publishes articles which are at the forefront of modern analytical chemistry and cover innovations in the techniques to the finest possible limits. This includes fundamental aspects, instrumentation, new developments, innovative and novel methods and applications including environmental and clinical field. Traditional classical analytical methods such as spectrophotometry and titrimetry as well as established instrumentation methods such as flame and graphite furnace atomic absorption spectrometry, gas chromatography, and modified glassy or carbon electrode electrochemical methods will be considered, provided they show significant improvements and novelty compared to the established methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信