Fawad Ahmed , Junxiang Wang , Rui Yang , Guoyao Yu , Shunmin Zhu , Wei Tang , Ercang Luo
{"title":"Harnessing acoustic energy with liquid metal triboelectric nanogenerators: A promising approach for moving-parts-free power generation","authors":"Fawad Ahmed , Junxiang Wang , Rui Yang , Guoyao Yu , Shunmin Zhu , Wei Tang , Ercang Luo","doi":"10.1016/j.applthermaleng.2024.125048","DOIUrl":null,"url":null,"abstract":"<div><div>Heat-driven acoustic engines (HDAEs) offer a promising approach to energy generation without solid moving parts. However, integrating linear alternators for acoustic-to-electric conversion introduces moving components, diminishing this advantage. To tackle this issue, we investigate using an acoustically-driven liquid–metal triboelectric generator (LM-TEG) within HDAEs for acoustic-to-electric conversion. Experiments were conducted in three settings: mechanically-driven LM-TEGs under atmospheric and pressurized gas conditions, and acoustically-driven LM-TEGs. Results from mechanically-driven LM-TEG tests show that using FEP material, increasing LM-TEG contact area, stacking TEGs in parallel, and using pressurized gas enhance performance. Acoustically-driven LM-TEG experiments demonstrate significant improvements with pressurized nitrogen, achieving a short-circuit current approximately 4.5 times higher than with helium at equivalent pressures. Notably, charge and power densities reached 388 μC/m<sup>2</sup> and 1.7 W/m<sup>2</sup>, respectively, surpassing typical values from conventional TEGs. Importantly, these results were obtained with a complete, fully integrated acoustically driven LM-TEG system. This study represents the first investigation in the literature of acoustically driven LM-TEGs, offering a distinct power generation system with no solid moving parts. The findings validate the feasibility of integrating LM-TEGs with HDAEs and suggest their potential for large-scale power generation, moving beyond the small-scale applications that have dominated prior TEG research.</div></div>","PeriodicalId":8201,"journal":{"name":"Applied Thermal Engineering","volume":"260 ","pages":"Article 125048"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359431124027169","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Heat-driven acoustic engines (HDAEs) offer a promising approach to energy generation without solid moving parts. However, integrating linear alternators for acoustic-to-electric conversion introduces moving components, diminishing this advantage. To tackle this issue, we investigate using an acoustically-driven liquid–metal triboelectric generator (LM-TEG) within HDAEs for acoustic-to-electric conversion. Experiments were conducted in three settings: mechanically-driven LM-TEGs under atmospheric and pressurized gas conditions, and acoustically-driven LM-TEGs. Results from mechanically-driven LM-TEG tests show that using FEP material, increasing LM-TEG contact area, stacking TEGs in parallel, and using pressurized gas enhance performance. Acoustically-driven LM-TEG experiments demonstrate significant improvements with pressurized nitrogen, achieving a short-circuit current approximately 4.5 times higher than with helium at equivalent pressures. Notably, charge and power densities reached 388 μC/m2 and 1.7 W/m2, respectively, surpassing typical values from conventional TEGs. Importantly, these results were obtained with a complete, fully integrated acoustically driven LM-TEG system. This study represents the first investigation in the literature of acoustically driven LM-TEGs, offering a distinct power generation system with no solid moving parts. The findings validate the feasibility of integrating LM-TEGs with HDAEs and suggest their potential for large-scale power generation, moving beyond the small-scale applications that have dominated prior TEG research.
期刊介绍:
Applied Thermal Engineering disseminates novel research related to the design, development and demonstration of components, devices, equipment, technologies and systems involving thermal processes for the production, storage, utilization and conservation of energy, with a focus on engineering application.
The journal publishes high-quality and high-impact Original Research Articles, Review Articles, Short Communications and Letters to the Editor on cutting-edge innovations in research, and recent advances or issues of interest to the thermal engineering community.