Ultratough nacre-inspired soybean protein isolate/graphene nanocomposite with flame-retardant, thermal conductivity and recyclable

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Tao Liu , Zheng Liu , Weidong Gu , Jieyu Zhang , Shanshan Gong , Jianzhang Li
{"title":"Ultratough nacre-inspired soybean protein isolate/graphene nanocomposite with flame-retardant, thermal conductivity and recyclable","authors":"Tao Liu ,&nbsp;Zheng Liu ,&nbsp;Weidong Gu ,&nbsp;Jieyu Zhang ,&nbsp;Shanshan Gong ,&nbsp;Jianzhang Li","doi":"10.1016/j.compositesb.2024.111998","DOIUrl":null,"url":null,"abstract":"<div><div>Bioplastics synthesized from soybean protein isolate (SPI) and graphite are promising alternatives but often suffer from their inability of mass production, high-cost, poor mechanical robustness, and even flammability. Herein, the scalable production of nacre-like nanocomposite by using the ball-milling spray method of graphene/SPI materials is demonstrated. The dynamic non-covalent was employed to facilitate the toughening effect of inorganic nano-fillers, while simultaneously utilizing dynamic covalent supramolecular interactions to realize plasticizer reinforcement materials. The dissipation of stress is facilitated through a combination of covalent and non-covalent interactions, thereby enhancing the interface interaction and resulting in materials with superior mechanical properties. The interfacial interaction between the SPI and the nano-reinforce confer exceptional mechanical properties to the bioplastic, achieving an excellent tensile strength 11.01 ± 0.81 MPa and fracture toughness14.52 ± 0.71 MJ/m<sup>3</sup>, which are 3.4 and 3.5 times, respectively, those of neat SPI. The recycling for highly reinforced nacre-mimetic SPI-based nanocomposites is critically enabled by the dynamic bond and improves the sustainability of bioinspired nanocomposites in cyclic economy. In addition, the SPI composite has exceptional flame retardancy, thermal conductivity, and electromagnetic shielding properties. This study provides new insights into the design of reliable and environmentally friendly biomaterials, which is significant for the development of sustainable development resources.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"291 ","pages":"Article 111998"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824008114","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Bioplastics synthesized from soybean protein isolate (SPI) and graphite are promising alternatives but often suffer from their inability of mass production, high-cost, poor mechanical robustness, and even flammability. Herein, the scalable production of nacre-like nanocomposite by using the ball-milling spray method of graphene/SPI materials is demonstrated. The dynamic non-covalent was employed to facilitate the toughening effect of inorganic nano-fillers, while simultaneously utilizing dynamic covalent supramolecular interactions to realize plasticizer reinforcement materials. The dissipation of stress is facilitated through a combination of covalent and non-covalent interactions, thereby enhancing the interface interaction and resulting in materials with superior mechanical properties. The interfacial interaction between the SPI and the nano-reinforce confer exceptional mechanical properties to the bioplastic, achieving an excellent tensile strength 11.01 ± 0.81 MPa and fracture toughness14.52 ± 0.71 MJ/m3, which are 3.4 and 3.5 times, respectively, those of neat SPI. The recycling for highly reinforced nacre-mimetic SPI-based nanocomposites is critically enabled by the dynamic bond and improves the sustainability of bioinspired nanocomposites in cyclic economy. In addition, the SPI composite has exceptional flame retardancy, thermal conductivity, and electromagnetic shielding properties. This study provides new insights into the design of reliable and environmentally friendly biomaterials, which is significant for the development of sustainable development resources.

Abstract Image

具有阻燃性、导热性和可回收性的超韧大豆分离蛋白/石墨烯纳米复合材料
以大豆分离蛋白(SPI)和石墨为原料合成生物塑料是一种很有前途的替代材料,但往往存在无法批量生产、成本高、机械坚固性差、甚至易燃性差的问题。本文演示了利用石墨烯/SPI材料的球磨喷涂方法可大规模生产类纳米复合材料。利用动态非共价来促进无机纳米填料的增韧效果,同时利用动态共价超分子相互作用来实现增塑剂增强材料。通过共价和非共价相互作用的结合,促进应力的消散,从而增强界面相互作用,从而使材料具有优越的力学性能。SPI与纳米增强剂的界面相互作用使生物塑料具有优异的力学性能,抗拉强度为11.01±0.81 MPa,断裂韧性为14.52±0.71 MJ/m3,分别是纯SPI的3.4倍和3.5倍。高增强纳米复合材料的循环利用是动态键的关键,提高了生物纳米复合材料在循环经济中的可持续性。此外,SPI复合材料具有优异的阻燃性、导热性和电磁屏蔽性能。本研究为设计可靠、环保的生物材料提供了新的思路,对可持续发展资源的开发具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信