Tao Liu , Zheng Liu , Weidong Gu , Jieyu Zhang , Shanshan Gong , Jianzhang Li
{"title":"Ultratough nacre-inspired soybean protein isolate/graphene nanocomposite with flame-retardant, thermal conductivity and recyclable","authors":"Tao Liu , Zheng Liu , Weidong Gu , Jieyu Zhang , Shanshan Gong , Jianzhang Li","doi":"10.1016/j.compositesb.2024.111998","DOIUrl":null,"url":null,"abstract":"<div><div>Bioplastics synthesized from soybean protein isolate (SPI) and graphite are promising alternatives but often suffer from their inability of mass production, high-cost, poor mechanical robustness, and even flammability. Herein, the scalable production of nacre-like nanocomposite by using the ball-milling spray method of graphene/SPI materials is demonstrated. The dynamic non-covalent was employed to facilitate the toughening effect of inorganic nano-fillers, while simultaneously utilizing dynamic covalent supramolecular interactions to realize plasticizer reinforcement materials. The dissipation of stress is facilitated through a combination of covalent and non-covalent interactions, thereby enhancing the interface interaction and resulting in materials with superior mechanical properties. The interfacial interaction between the SPI and the nano-reinforce confer exceptional mechanical properties to the bioplastic, achieving an excellent tensile strength 11.01 ± 0.81 MPa and fracture toughness14.52 ± 0.71 MJ/m<sup>3</sup>, which are 3.4 and 3.5 times, respectively, those of neat SPI. The recycling for highly reinforced nacre-mimetic SPI-based nanocomposites is critically enabled by the dynamic bond and improves the sustainability of bioinspired nanocomposites in cyclic economy. In addition, the SPI composite has exceptional flame retardancy, thermal conductivity, and electromagnetic shielding properties. This study provides new insights into the design of reliable and environmentally friendly biomaterials, which is significant for the development of sustainable development resources.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"291 ","pages":"Article 111998"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824008114","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bioplastics synthesized from soybean protein isolate (SPI) and graphite are promising alternatives but often suffer from their inability of mass production, high-cost, poor mechanical robustness, and even flammability. Herein, the scalable production of nacre-like nanocomposite by using the ball-milling spray method of graphene/SPI materials is demonstrated. The dynamic non-covalent was employed to facilitate the toughening effect of inorganic nano-fillers, while simultaneously utilizing dynamic covalent supramolecular interactions to realize plasticizer reinforcement materials. The dissipation of stress is facilitated through a combination of covalent and non-covalent interactions, thereby enhancing the interface interaction and resulting in materials with superior mechanical properties. The interfacial interaction between the SPI and the nano-reinforce confer exceptional mechanical properties to the bioplastic, achieving an excellent tensile strength 11.01 ± 0.81 MPa and fracture toughness14.52 ± 0.71 MJ/m3, which are 3.4 and 3.5 times, respectively, those of neat SPI. The recycling for highly reinforced nacre-mimetic SPI-based nanocomposites is critically enabled by the dynamic bond and improves the sustainability of bioinspired nanocomposites in cyclic economy. In addition, the SPI composite has exceptional flame retardancy, thermal conductivity, and electromagnetic shielding properties. This study provides new insights into the design of reliable and environmentally friendly biomaterials, which is significant for the development of sustainable development resources.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.