Epic math battle of history: Grothendieck vs Nikodym

IF 1.7 2区 数学 Q1 MATHEMATICS
Damian Głodkowski , Agnieszka Widz
{"title":"Epic math battle of history: Grothendieck vs Nikodym","authors":"Damian Głodkowski ,&nbsp;Agnieszka Widz","doi":"10.1016/j.jfa.2024.110757","DOIUrl":null,"url":null,"abstract":"<div><div>We define a <em>σ</em>-centered notion of forcing that forces the existence of a Boolean algebra with the Grothendieck property and without the Nikodym property. In particular, the existence of such an algebra is consistent with the negation of the continuum hypothesis. The algebra we construct consists of Borel subsets of the Cantor set and has cardinality <span><math><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>. We also show how to apply our method to streamline Talagrand's construction of such an algebra under the continuum hypothesis.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"288 4","pages":"Article 110757"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624004452","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define a σ-centered notion of forcing that forces the existence of a Boolean algebra with the Grothendieck property and without the Nikodym property. In particular, the existence of such an algebra is consistent with the negation of the continuum hypothesis. The algebra we construct consists of Borel subsets of the Cantor set and has cardinality ω1. We also show how to apply our method to streamline Talagrand's construction of such an algebra under the continuum hypothesis.
历史上史诗般的数学之战:格罗滕迪克vs尼科代姆
我们定义了一个以σ为中心的强迫概念,它强制存在一个具有Grothendieck性质而不具有Nikodym性质的布尔代数。特别是,这种代数的存在性与连续统假设的否定性是一致的。我们构造的代数由康托集合的Borel子集组成,其基数为ω1。我们还展示了如何应用我们的方法来简化Talagrand在连续统假设下构造这样一个代数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信