Investigation of two sandwich-structured nanohybrid coating derived from graphene oxide/carbon nanotube on interfacial adhesion and fracture toughness of carbon fiber composites

IF 12.7 1区 材料科学 Q1 ENGINEERING, MULTIDISCIPLINARY
Qing Wu , Yating Li , Jun Chang , Dan Jin , Bolin Xiao , Renjie Yao , Jianfeng Zhu
{"title":"Investigation of two sandwich-structured nanohybrid coating derived from graphene oxide/carbon nanotube on interfacial adhesion and fracture toughness of carbon fiber composites","authors":"Qing Wu ,&nbsp;Yating Li ,&nbsp;Jun Chang ,&nbsp;Dan Jin ,&nbsp;Bolin Xiao ,&nbsp;Renjie Yao ,&nbsp;Jianfeng Zhu","doi":"10.1016/j.compositesb.2024.112007","DOIUrl":null,"url":null,"abstract":"<div><div>Designing stronger interphase towards solving the long-standing dilemma of interfacial delamination is critical for stable application of carbon fiber composites. Herein, nano-scale sandwich-structured coatings, where carbon nanotubes (CNTs) were uniformly anchored on both sides of graphene oxide (GO) layer (abbreviated as C/GO/C) and its reverse, that is double GO layers encapsulated CNT network (G/CNT/G in short), were reported around fiber periphery via vacuum filtration method. The effects of surface structure differences on interfacial shear strength (IFSS) and fracture toughness were compared in epoxy matrix. Impressively, composite incorporating G/CNT/G modified fiber delivered prominent IFSS and interfacial fracture toughness of 114.6 MPa and 137.0 J/m<sup>2</sup>, 105.7 % and 279.5 % increases over control fiber composite. This strategy was also superior to C/GO/C and other reported GO and CNT related works. The main factors for maximal IFSS offered by G/CNT/G are that two GO panels enrich active sites to tightly bridge fiber and epoxy, as well as its layered feature and large surface area provide a stable “skeleton” at interphase for stress transfer. Additionally, the G/CNT/G “skeleton” is closer to sandwich structure of iris leaf, in which the porous CNT intermediate network creates larger deformation and adsorb more energy, leading to peak interfacial fracture toughness.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"291 ","pages":"Article 112007"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824008205","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Designing stronger interphase towards solving the long-standing dilemma of interfacial delamination is critical for stable application of carbon fiber composites. Herein, nano-scale sandwich-structured coatings, where carbon nanotubes (CNTs) were uniformly anchored on both sides of graphene oxide (GO) layer (abbreviated as C/GO/C) and its reverse, that is double GO layers encapsulated CNT network (G/CNT/G in short), were reported around fiber periphery via vacuum filtration method. The effects of surface structure differences on interfacial shear strength (IFSS) and fracture toughness were compared in epoxy matrix. Impressively, composite incorporating G/CNT/G modified fiber delivered prominent IFSS and interfacial fracture toughness of 114.6 MPa and 137.0 J/m2, 105.7 % and 279.5 % increases over control fiber composite. This strategy was also superior to C/GO/C and other reported GO and CNT related works. The main factors for maximal IFSS offered by G/CNT/G are that two GO panels enrich active sites to tightly bridge fiber and epoxy, as well as its layered feature and large surface area provide a stable “skeleton” at interphase for stress transfer. Additionally, the G/CNT/G “skeleton” is closer to sandwich structure of iris leaf, in which the porous CNT intermediate network creates larger deformation and adsorb more energy, leading to peak interfacial fracture toughness.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Composites Part B: Engineering
Composites Part B: Engineering 工程技术-材料科学:复合
CiteScore
24.40
自引率
11.50%
发文量
784
审稿时长
21 days
期刊介绍: Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development. The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信