Numerical modeling of sediment dumping in deep water through a rock-fall pipe for subsea pipeline burial

IF 4.3 2区 工程技术 Q1 ENGINEERING, OCEAN
Runyu Xie, Pengzhi Lin
{"title":"Numerical modeling of sediment dumping in deep water through a rock-fall pipe for subsea pipeline burial","authors":"Runyu Xie,&nbsp;Pengzhi Lin","doi":"10.1016/j.apor.2024.104328","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a numerical study of sediment dumping in deep water through a rock-fall pipe for the burial of a subsea pipeline. A coupled CFD-DEM model is employed to model the interaction among sediments, ambient flow, pipeline, and seabed. Unlike sediment dumping in shallow water, in deep water sediment particles inside the rock-fall pipe may be accelerated to dangerous speed at the outlet and thus require a sufficient distance between the rock-pipe outlet and the subsea pipeline so that sediments can be slowed down before making impact on the subsea pipeline. The purpose of the study is to find the optimal distance of the fall pipe outlet above the subsea pipeline with different suspension heights above seabed. The numerical model is first validated against available experimental data in terms of flow and sediment simulations. It is then used to investigate the detailed hydrodynamic characteristics and particle motions during sediment dumping in deep water, which can be divided into particle acceleration inside the rock-fall pipe and particle deceleration and diffusion out of the rock-fall pipe. While insufficient distance of the rock-fall pipe outlet above the subsea pipeline may lead to excessive impact force, too large distance may result in over-spreading of sediments and thus less efficiency of subsequent pipeline burial. Using a real project in the Liwan 3-1 region, China, as the case study, the numerical modeling results with prototype scale are used in the analysis to provide the optimal burying solution that uses the minimal amount of sediment to reach the protection criterion of the pipeline burial, when different pipeline suspensions above seabed are considered.</div></div>","PeriodicalId":8261,"journal":{"name":"Applied Ocean Research","volume":"154 ","pages":"Article 104328"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Ocean Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141118724004498","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, OCEAN","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a numerical study of sediment dumping in deep water through a rock-fall pipe for the burial of a subsea pipeline. A coupled CFD-DEM model is employed to model the interaction among sediments, ambient flow, pipeline, and seabed. Unlike sediment dumping in shallow water, in deep water sediment particles inside the rock-fall pipe may be accelerated to dangerous speed at the outlet and thus require a sufficient distance between the rock-pipe outlet and the subsea pipeline so that sediments can be slowed down before making impact on the subsea pipeline. The purpose of the study is to find the optimal distance of the fall pipe outlet above the subsea pipeline with different suspension heights above seabed. The numerical model is first validated against available experimental data in terms of flow and sediment simulations. It is then used to investigate the detailed hydrodynamic characteristics and particle motions during sediment dumping in deep water, which can be divided into particle acceleration inside the rock-fall pipe and particle deceleration and diffusion out of the rock-fall pipe. While insufficient distance of the rock-fall pipe outlet above the subsea pipeline may lead to excessive impact force, too large distance may result in over-spreading of sediments and thus less efficiency of subsequent pipeline burial. Using a real project in the Liwan 3-1 region, China, as the case study, the numerical modeling results with prototype scale are used in the analysis to provide the optimal burying solution that uses the minimal amount of sediment to reach the protection criterion of the pipeline burial, when different pipeline suspensions above seabed are considered.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Ocean Research
Applied Ocean Research 地学-工程:大洋
CiteScore
8.70
自引率
7.00%
发文量
316
审稿时长
59 days
期刊介绍: The aim of Applied Ocean Research is to encourage the submission of papers that advance the state of knowledge in a range of topics relevant to ocean engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信