Yibo Zhao , Shifen Cheng , Song Gao , Peixiao Wang , Feng Lu
{"title":"Predicting origin-destination flows by considering heterogeneous mobility patterns","authors":"Yibo Zhao , Shifen Cheng , Song Gao , Peixiao Wang , Feng Lu","doi":"10.1016/j.scs.2024.106015","DOIUrl":null,"url":null,"abstract":"<div><div>The accurate prediction of origin-destination (OD) flows is essential for advancing sustainable urban mobility and supporting resilient urban planning. However, the inherent heterogeneity of mobility patterns results in complex geographic unit relations, diverse spatial organizational structures, and the long-tailed effect on OD flow distribution. This study proposes a novel OD flow prediction method based on graph-based deep learning (named as HMCG-LGBM). Specifically, 1) a modularity-based graph reconstruction strategy is presented for geographic unit relation augmentation by eliminating weak connections; 2) the heterogeneous spatial organization of OD flows is captured by combining the community detection approach and graph attention mechanism with the introduction of socio-economic and spatial features; and 3) a weighted loss function with distribution smoothing paradigm is developed to enhance the prediction for low-probability mobility events, addressing the challenges posed by long-tailed distributions. Extensive experiments conducted on real-world datasets show that the predictive performance of the proposed method is significantly improved, with the RMSE and MAE reduced from the baselines by 11.1%–33.3% and 14.1%–22.2%, respectively. The results also demonstrate the robustness of the proposed method for dealing with imbalanced OD flow distributions, providing valuable insights for spatial interaction predictive modeling in the context of sustainable urban systems.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"118 ","pages":"Article 106015"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670724008382","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The accurate prediction of origin-destination (OD) flows is essential for advancing sustainable urban mobility and supporting resilient urban planning. However, the inherent heterogeneity of mobility patterns results in complex geographic unit relations, diverse spatial organizational structures, and the long-tailed effect on OD flow distribution. This study proposes a novel OD flow prediction method based on graph-based deep learning (named as HMCG-LGBM). Specifically, 1) a modularity-based graph reconstruction strategy is presented for geographic unit relation augmentation by eliminating weak connections; 2) the heterogeneous spatial organization of OD flows is captured by combining the community detection approach and graph attention mechanism with the introduction of socio-economic and spatial features; and 3) a weighted loss function with distribution smoothing paradigm is developed to enhance the prediction for low-probability mobility events, addressing the challenges posed by long-tailed distributions. Extensive experiments conducted on real-world datasets show that the predictive performance of the proposed method is significantly improved, with the RMSE and MAE reduced from the baselines by 11.1%–33.3% and 14.1%–22.2%, respectively. The results also demonstrate the robustness of the proposed method for dealing with imbalanced OD flow distributions, providing valuable insights for spatial interaction predictive modeling in the context of sustainable urban systems.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;