{"title":"Spatial and temporal analysis of decomposition models in China","authors":"Ying Sun , Ning Lu","doi":"10.1016/j.renene.2024.121850","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive evaluation of 15 decomposition models (12 empirical and 3 atmospheric transmittance models) for estimating diffuse horizontal irradiance at 17 radiation sites in China, using hourly radiation data from 2011 to 2020. Our results show distinct patterns in model performance across different geographical regions, seasons, and sky conditions. The Liu model demonstrates the best overall performance with an RMSE of 78.20 W/m<sup>2</sup>, while model accuracy shows significant geographical variation, performing best in South and Southeast China (RMSE<70 W/m<sup>2</sup>) and worst in the Qinghai-Tibet Plateau and Northwest China (RMSE>90 W/m<sup>2</sup>). Seasonal analysis reveals better performance in winter than in summer, with RMSE differences approaching 40 W/m<sup>2</sup>, mainly due to the higher proportion of solar elevation angles exceeding 30° in summer. Under different sky conditions (classified by clearness index: 0–0.35 for overcast, 0.35–0.65 for partly cloudy, 0.65–1 for clear skies), most models follow an RMSE pattern of partly cloudy > clear sky > overcast. However, the Reindl2, Boland, DIRINT, and DIRINDEX models deviate from this trend due to their formula structure and sensitivity to atmospheric parameters. To reduce these regional disparities, we propose a new region-specific model selection strategy: the DIRINDEX model for eastern regions, DIRINT for central areas, and Karatasou for western regions. This combined approach reduces the overall RMSE to 73.17 W/m<sup>2</sup>. This research deepens our understanding of the application of decomposition models in China's complex geographical and climatic conditions, offering valuable references for solar radiation modeling and renewable energy forecasting in diverse climatic regions.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121850"},"PeriodicalIF":9.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124019189","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a comprehensive evaluation of 15 decomposition models (12 empirical and 3 atmospheric transmittance models) for estimating diffuse horizontal irradiance at 17 radiation sites in China, using hourly radiation data from 2011 to 2020. Our results show distinct patterns in model performance across different geographical regions, seasons, and sky conditions. The Liu model demonstrates the best overall performance with an RMSE of 78.20 W/m2, while model accuracy shows significant geographical variation, performing best in South and Southeast China (RMSE<70 W/m2) and worst in the Qinghai-Tibet Plateau and Northwest China (RMSE>90 W/m2). Seasonal analysis reveals better performance in winter than in summer, with RMSE differences approaching 40 W/m2, mainly due to the higher proportion of solar elevation angles exceeding 30° in summer. Under different sky conditions (classified by clearness index: 0–0.35 for overcast, 0.35–0.65 for partly cloudy, 0.65–1 for clear skies), most models follow an RMSE pattern of partly cloudy > clear sky > overcast. However, the Reindl2, Boland, DIRINT, and DIRINDEX models deviate from this trend due to their formula structure and sensitivity to atmospheric parameters. To reduce these regional disparities, we propose a new region-specific model selection strategy: the DIRINDEX model for eastern regions, DIRINT for central areas, and Karatasou for western regions. This combined approach reduces the overall RMSE to 73.17 W/m2. This research deepens our understanding of the application of decomposition models in China's complex geographical and climatic conditions, offering valuable references for solar radiation modeling and renewable energy forecasting in diverse climatic regions.
期刊介绍:
Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices.
As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.