The impact of soiling on temperature and sustainable solar PV power generation: A detailed analysis

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Shubham Sharma , Prashant Malik , Sunanda Sinha
{"title":"The impact of soiling on temperature and sustainable solar PV power generation: A detailed analysis","authors":"Shubham Sharma ,&nbsp;Prashant Malik ,&nbsp;Sunanda Sinha","doi":"10.1016/j.renene.2024.121864","DOIUrl":null,"url":null,"abstract":"<div><div>Soiling accumulation and high temperatures have a detrimental impact on the performance of solar photovoltaic modules. However, the effect of soiling on module temperatures remains a relatively unexplored area despite offering intriguing research possibilities. This study investigates the impact of soiling on solar photovoltaic modules, focusing on the variation in module temperatures. The research uses experimental investigations and a hybrid diode model to account for soiling losses. Furthermore, the model is employed to quantify the power reduction due to the temperature rise caused by soiling. The experimental investigations revealed that soiling deposition results in both substantial energy reductions and higher module temperatures. The soiling-induced variation in temperature profiles and corresponding power reductions on certain days was also analyzed. The results showed that the daily average reduction in power due to increased temperature was 0.614 %, 1.044 % and 1.31 %, while on the same days, the daily maximum reduction observed was 1.55 %, 2.53 % and 3.46 %, respectively. Thus, higher temperatures lead to substantial power degradation and may also affect the health of PV modules in the long run. The outcomes of this study emphasize the importance of addressing soiling-induced temperature variations, offering valuable insights for improved design and maintenance practices of power plants.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"237 ","pages":"Article 121864"},"PeriodicalIF":9.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148124019323","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Soiling accumulation and high temperatures have a detrimental impact on the performance of solar photovoltaic modules. However, the effect of soiling on module temperatures remains a relatively unexplored area despite offering intriguing research possibilities. This study investigates the impact of soiling on solar photovoltaic modules, focusing on the variation in module temperatures. The research uses experimental investigations and a hybrid diode model to account for soiling losses. Furthermore, the model is employed to quantify the power reduction due to the temperature rise caused by soiling. The experimental investigations revealed that soiling deposition results in both substantial energy reductions and higher module temperatures. The soiling-induced variation in temperature profiles and corresponding power reductions on certain days was also analyzed. The results showed that the daily average reduction in power due to increased temperature was 0.614 %, 1.044 % and 1.31 %, while on the same days, the daily maximum reduction observed was 1.55 %, 2.53 % and 3.46 %, respectively. Thus, higher temperatures lead to substantial power degradation and may also affect the health of PV modules in the long run. The outcomes of this study emphasize the importance of addressing soiling-induced temperature variations, offering valuable insights for improved design and maintenance practices of power plants.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信