Yinxia Li , Fan Li , Jiaao Shu , Chunhua Meng , Jun Zhang , Jianli Zhang , Yong Qian , Huili Wang , Qiang Ding , Shaoxian Cao
{"title":"Acute heat stress regulates estradiol synthesis in ovine ovarian granulosa cells through the SREBPs/MVK–LHR pathway","authors":"Yinxia Li , Fan Li , Jiaao Shu , Chunhua Meng , Jun Zhang , Jianli Zhang , Yong Qian , Huili Wang , Qiang Ding , Shaoxian Cao","doi":"10.1016/j.anireprosci.2024.107649","DOIUrl":null,"url":null,"abstract":"<div><div>The adverse effects of heat stress on reproductive performance of sheep are becoming increasingly severe. Previous research has revealed that heat stress decreases both cholesterol and estradiol content; however, regulation of estradiol by cholesterol and its regulatory mechanism under heat stress are unclear. Mevalonate kinase (MVK), a key cholesterol synthesis pathway enzyme, binds to the luteinizing hormone receptor (LHR; a key gene regulating hormone synthesis) mRNA. In this study, ovine ovarian granulosa cells (GCs) were used in an <em>in vitro</em> model. To elucidate the underlying molecular mechanism, immunofluorescence, quantitative reverse transcription polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, and an RNA electrophoretic mobility shift assay (REMSA) were used to investigate whether the decrease in cholesterol caused by acute heat stress resulted in a decrease in estradiol synthesis. Acute heat stress reduced the cholesterol content in ovine ovarian GCs, which transactivated the cholesterol synthesis pathway corresponding to the gene expression of sterol regulatory element-binding protein (SREBP-1A), SREBP-2, and MVK. Upregulated MVK increased the MVK–<em>LHR</em> mRNA complex, which caused <em>LHR</em> mRNA decay and downregulation, further leading to the downregulation of CYP19A1 and a decrease in estradiol. The cholesterol synthesis inhibitor, PF-429242, alleviated the decrease in estradiol synthesis caused by acute heat stress. Overall, acute heat stress caused a decrease in total cholesterol, which transactivated the expression of cholesterol synthesis genes, such as <em>SREBP-1A</em>, <em>SREBP2</em>, and <em>MVK</em>, increasing the MVK–LHR complex, downregulating <em>LHR</em> expression, and further decreasing estradiol.</div></div>","PeriodicalId":7880,"journal":{"name":"Animal Reproduction Science","volume":"272 ","pages":"Article 107649"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Reproduction Science","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378432024002495","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The adverse effects of heat stress on reproductive performance of sheep are becoming increasingly severe. Previous research has revealed that heat stress decreases both cholesterol and estradiol content; however, regulation of estradiol by cholesterol and its regulatory mechanism under heat stress are unclear. Mevalonate kinase (MVK), a key cholesterol synthesis pathway enzyme, binds to the luteinizing hormone receptor (LHR; a key gene regulating hormone synthesis) mRNA. In this study, ovine ovarian granulosa cells (GCs) were used in an in vitro model. To elucidate the underlying molecular mechanism, immunofluorescence, quantitative reverse transcription polymerase chain reaction, western blotting, enzyme-linked immunosorbent assay, and an RNA electrophoretic mobility shift assay (REMSA) were used to investigate whether the decrease in cholesterol caused by acute heat stress resulted in a decrease in estradiol synthesis. Acute heat stress reduced the cholesterol content in ovine ovarian GCs, which transactivated the cholesterol synthesis pathway corresponding to the gene expression of sterol regulatory element-binding protein (SREBP-1A), SREBP-2, and MVK. Upregulated MVK increased the MVK–LHR mRNA complex, which caused LHR mRNA decay and downregulation, further leading to the downregulation of CYP19A1 and a decrease in estradiol. The cholesterol synthesis inhibitor, PF-429242, alleviated the decrease in estradiol synthesis caused by acute heat stress. Overall, acute heat stress caused a decrease in total cholesterol, which transactivated the expression of cholesterol synthesis genes, such as SREBP-1A, SREBP2, and MVK, increasing the MVK–LHR complex, downregulating LHR expression, and further decreasing estradiol.
期刊介绍:
Animal Reproduction Science publishes results from studies relating to reproduction and fertility in animals. This includes both fundamental research and applied studies, including management practices that increase our understanding of the biology and manipulation of reproduction. Manuscripts should go into depth in the mechanisms involved in the research reported, rather than a give a mere description of findings. The focus is on animals that are useful to humans including food- and fibre-producing; companion/recreational; captive; and endangered species including zoo animals, but excluding laboratory animals unless the results of the study provide new information that impacts the basic understanding of the biology or manipulation of reproduction.
The journal''s scope includes the study of reproductive physiology and endocrinology, reproductive cycles, natural and artificial control of reproduction, preservation and use of gametes and embryos, pregnancy and parturition, infertility and sterility, diagnostic and therapeutic techniques.
The Editorial Board of Animal Reproduction Science has decided not to publish papers in which there is an exclusive examination of the in vitro development of oocytes and embryos; however, there will be consideration of papers that include in vitro studies where the source of the oocytes and/or development of the embryos beyond the blastocyst stage is part of the experimental design.