SEMACOL: Semantic-enhanced multi-scale approach for text-guided grayscale image colorization

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Chaochao Niu, Ming Tao, Bing-Kun Bao
{"title":"SEMACOL: Semantic-enhanced multi-scale approach for text-guided grayscale image colorization","authors":"Chaochao Niu,&nbsp;Ming Tao,&nbsp;Bing-Kun Bao","doi":"10.1016/j.patcog.2024.111203","DOIUrl":null,"url":null,"abstract":"<div><div>High-quality colorization of grayscale images using text descriptions presents a significant challenge, especially in accurately coloring small objects. The existing methods have two major flaws. First, text descriptions typically omit size information of objects, resulting in text features that often lack semantic information reflecting object sizes. Second, these methods identify coloring areas by relying solely on low-resolution visual features from the Unet encoder and fail to leverage the fine-grained information provided by high-resolution visual features effectively. To address these issues, we introduce the Semantic-Enhanced Multi-scale Approach for Text-Guided Grayscale Image Colorization (SEMACOL). We first introduce a Cross-Modal Text Augmentation module that incorporates grayscale images into text features, which enables accurate perception of object sizes in text descriptions. Subsequently, we propose a Multi-scale Content Location module, which utilizes multi-scale features to precisely identify coloring areas within grayscale images. Meanwhile, we incorporate a Text-Influenced Colorization Adjustment module to effectively adjust colorization based on text descriptions. Finally, we implement a Dynamic Feature Fusion Strategy, which dynamically refines outputs from both the Multi-scale Content Location and Text-Influenced Colorization Adjustment modules, ensuring a coherent colorization process. SEMACOL demonstrates remarkable performance improvements over existing state-of-the-art methods on public datasets. Specifically, SEMACOL achieves a PSNR of 25.695, SSIM of 0.92240, LPIPS of 0.156, and FID of 17.54, surpassing the previous best results (PSNR: 25.511, SSIM: 0.92104, LPIPS: 0.157, FID: 26.93). The code will be available at <span><span>https://github.com/ChchNiu/SEMACOL</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"160 ","pages":"Article 111203"},"PeriodicalIF":7.5000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324009543","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

High-quality colorization of grayscale images using text descriptions presents a significant challenge, especially in accurately coloring small objects. The existing methods have two major flaws. First, text descriptions typically omit size information of objects, resulting in text features that often lack semantic information reflecting object sizes. Second, these methods identify coloring areas by relying solely on low-resolution visual features from the Unet encoder and fail to leverage the fine-grained information provided by high-resolution visual features effectively. To address these issues, we introduce the Semantic-Enhanced Multi-scale Approach for Text-Guided Grayscale Image Colorization (SEMACOL). We first introduce a Cross-Modal Text Augmentation module that incorporates grayscale images into text features, which enables accurate perception of object sizes in text descriptions. Subsequently, we propose a Multi-scale Content Location module, which utilizes multi-scale features to precisely identify coloring areas within grayscale images. Meanwhile, we incorporate a Text-Influenced Colorization Adjustment module to effectively adjust colorization based on text descriptions. Finally, we implement a Dynamic Feature Fusion Strategy, which dynamically refines outputs from both the Multi-scale Content Location and Text-Influenced Colorization Adjustment modules, ensuring a coherent colorization process. SEMACOL demonstrates remarkable performance improvements over existing state-of-the-art methods on public datasets. Specifically, SEMACOL achieves a PSNR of 25.695, SSIM of 0.92240, LPIPS of 0.156, and FID of 17.54, surpassing the previous best results (PSNR: 25.511, SSIM: 0.92104, LPIPS: 0.157, FID: 26.93). The code will be available at https://github.com/ChchNiu/SEMACOL.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信