Enhanced therapeutic potential of a self-healing hyaluronic acid hydrogel for early intervention in osteoarthritis

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Dongze Wu , Shuhui Yang , Zhe Gong , Xinxin Zhu , Juncong Hong , Haitao Wang , Wenbin Xu , Juncheng Lai , Xiumei Wang , Jiye Lu , Xiangqian Fang , Guoqiang Jiang , Jinjin Zhu
{"title":"Enhanced therapeutic potential of a self-healing hyaluronic acid hydrogel for early intervention in osteoarthritis","authors":"Dongze Wu ,&nbsp;Shuhui Yang ,&nbsp;Zhe Gong ,&nbsp;Xinxin Zhu ,&nbsp;Juncong Hong ,&nbsp;Haitao Wang ,&nbsp;Wenbin Xu ,&nbsp;Juncheng Lai ,&nbsp;Xiumei Wang ,&nbsp;Jiye Lu ,&nbsp;Xiangqian Fang ,&nbsp;Guoqiang Jiang ,&nbsp;Jinjin Zhu","doi":"10.1016/j.mtbio.2024.101353","DOIUrl":null,"url":null,"abstract":"<div><div>Osteoarthritis (OA) is characterized by symptoms such as abnormal lubrication function of synovial fluid and heightened friction on the cartilage surface in its early stages, prior to evident cartilage damage. Current early intervention strategies employing lubricated hydrogels to shield cartilage from friction often overlook the significance of hydrogel-cartilage adhesion and enhancement of the cartilage extracellular matrix (ECM). Herein, we constructed a hydrogel based on dihydrazide-modified hyaluronic acid (HA) (AHA) and catechol-conjugated aldehyde-modified HA (CHA), which not only adheres to the cartilage surface as an effective lubricant but also improves the extracellular environment of chondrocytes in OA. Material characterization experiments on AHA/CHA hydrogels with varying concentrations validated their exceptional self-healing capabilities, superior injectability and viscoelasticity, sustained adhesion strength to cartilage, and a low friction coefficient. Chondrocytes exhibited robust adhesion and proliferation on the AHA/CHA hydrogel surface, with the upregulation of cartilage matrix protein expression. Intra-articular injection of AHA/CHA hydrogels was performed following destabilization of the medial meniscus (DMM) surgery in mice to assess its protective effect on cartilage. The AHA/CHA hydrogel effectively attenuated the degree of cartilage wear, facilitated chondrocytes' anabolic metabolism, and restored the ECM of cartilage. Therefore, the AHA/CHA hydrogel emerges as a promising therapeutic approach in clinical practices of OA treatment.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101353"},"PeriodicalIF":8.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424004149","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is characterized by symptoms such as abnormal lubrication function of synovial fluid and heightened friction on the cartilage surface in its early stages, prior to evident cartilage damage. Current early intervention strategies employing lubricated hydrogels to shield cartilage from friction often overlook the significance of hydrogel-cartilage adhesion and enhancement of the cartilage extracellular matrix (ECM). Herein, we constructed a hydrogel based on dihydrazide-modified hyaluronic acid (HA) (AHA) and catechol-conjugated aldehyde-modified HA (CHA), which not only adheres to the cartilage surface as an effective lubricant but also improves the extracellular environment of chondrocytes in OA. Material characterization experiments on AHA/CHA hydrogels with varying concentrations validated their exceptional self-healing capabilities, superior injectability and viscoelasticity, sustained adhesion strength to cartilage, and a low friction coefficient. Chondrocytes exhibited robust adhesion and proliferation on the AHA/CHA hydrogel surface, with the upregulation of cartilage matrix protein expression. Intra-articular injection of AHA/CHA hydrogels was performed following destabilization of the medial meniscus (DMM) surgery in mice to assess its protective effect on cartilage. The AHA/CHA hydrogel effectively attenuated the degree of cartilage wear, facilitated chondrocytes' anabolic metabolism, and restored the ECM of cartilage. Therefore, the AHA/CHA hydrogel emerges as a promising therapeutic approach in clinical practices of OA treatment.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信