99mTc/90Y radiolabeled biodegradable gel microspheres for lung shutting fraction assessment and radioembolization in hepatocellular carcinoma theranostics

IF 8.7 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yi Dong , Lingling Yin , Jintao Huang , Di Hu , Jing Sun , Zhe Zhang , Zhihao Li , Bin-Yan Zhong , Ran Zhu , Guanglin Wang
{"title":"99mTc/90Y radiolabeled biodegradable gel microspheres for lung shutting fraction assessment and radioembolization in hepatocellular carcinoma theranostics","authors":"Yi Dong ,&nbsp;Lingling Yin ,&nbsp;Jintao Huang ,&nbsp;Di Hu ,&nbsp;Jing Sun ,&nbsp;Zhe Zhang ,&nbsp;Zhihao Li ,&nbsp;Bin-Yan Zhong ,&nbsp;Ran Zhu ,&nbsp;Guanglin Wang","doi":"10.1016/j.mtbio.2024.101367","DOIUrl":null,"url":null,"abstract":"<div><div>Transarterial radioembolization (TARE) is a well-established clinical therapy for the treatment of patients with intermediate to advanced hepatocellular carcinoma (HCC) or those who are ineligible for radical treatment. However, commercialized radioactive microspheres still have some issues, such as high density, complicated preparation, non-biodegradability. Furthermore, the use of different radioactive microspheres during TARE and lung shunt fraction assessment has led to inconsistencies in biodistribution in certain cases. This study employed biodegradable hyaluronic acid (HA) as the backbone and modified with bisphosphonate and methacrylic acid to prepare biodegradable gel microspheres (HAMS) using the water-in-oil emulsification and photo-crosslinking for labeling the diagnostic radionuclide of <sup>99m</sup>Tc and therapeutic radionuclide of <sup>90</sup>Y. Both <sup>99m</sup>Tc radiolabeled HAMS (<sup>99m</sup>Tc-HAMS) and radiolabeled <sup>90</sup>Y-HAMS (<sup>90</sup>Y-HAMS) were highly efficient in radiolabeling and exhibited excellent radiostability <em>in vitro</em> and <em>in vivo</em>. <sup>99m</sup>Tc-HAMS are highly effective in assessing the LSF, while <sup>90</sup>Y-HAMS, administered though TARE, are effective in inhibiting the growth of in situ HCC without any side effects. Both <sup>99m</sup>Tc-HAMS and <sup>90</sup>Y-HAMS have promising clinical applications in HCC theranostics.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"29 ","pages":"Article 101367"},"PeriodicalIF":8.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006424004289","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Transarterial radioembolization (TARE) is a well-established clinical therapy for the treatment of patients with intermediate to advanced hepatocellular carcinoma (HCC) or those who are ineligible for radical treatment. However, commercialized radioactive microspheres still have some issues, such as high density, complicated preparation, non-biodegradability. Furthermore, the use of different radioactive microspheres during TARE and lung shunt fraction assessment has led to inconsistencies in biodistribution in certain cases. This study employed biodegradable hyaluronic acid (HA) as the backbone and modified with bisphosphonate and methacrylic acid to prepare biodegradable gel microspheres (HAMS) using the water-in-oil emulsification and photo-crosslinking for labeling the diagnostic radionuclide of 99mTc and therapeutic radionuclide of 90Y. Both 99mTc radiolabeled HAMS (99mTc-HAMS) and radiolabeled 90Y-HAMS (90Y-HAMS) were highly efficient in radiolabeling and exhibited excellent radiostability in vitro and in vivo. 99mTc-HAMS are highly effective in assessing the LSF, while 90Y-HAMS, administered though TARE, are effective in inhibiting the growth of in situ HCC without any side effects. Both 99mTc-HAMS and 90Y-HAMS have promising clinical applications in HCC theranostics.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信