Unraveling the mechanisms of organic contamination on gold pulse compression gratings: From cluster formation to stratified adsorption

IF 5.7 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Xujie Liu , Qingshun Bai , Tingting Wang , Yuhai Li , Xueshi Xu , Siyu Gao
{"title":"Unraveling the mechanisms of organic contamination on gold pulse compression gratings: From cluster formation to stratified adsorption","authors":"Xujie Liu ,&nbsp;Qingshun Bai ,&nbsp;Tingting Wang ,&nbsp;Yuhai Li ,&nbsp;Xueshi Xu ,&nbsp;Siyu Gao","doi":"10.1016/j.surfin.2024.105500","DOIUrl":null,"url":null,"abstract":"<div><div>Organic contamination on gold pulse compression gratings significantly hampers the performance of high-power laser systems under intense laser irradiation. Investigating the adsorption mechanisms of organic contaminants on microstructured gratings is essential for addressing contamination issues and mitigating damage. In this article, we determine the microstructured surface aggregation characteristics of volatile dibutyl phthalate (DBP), the stratified distribution pattern of amorphous DBP clusters, and the distribution points of molecules within microstructures using experiments and cross-scale simulations (molecular dynamics and quantum chemistry). Our analysis of the Reduced Density Gradient (RDG) and charge transfer reveals that adsorption between organic molecules and the gold substrate primarily stems from non-covalent van der Waals and electrostatic forces induced by ester functional groups. Based on this theoretical study, we propose the \"molecule-substrate\" and \"bimolecular\" adsorption modes of DBP to elucidate the adsorption mechanisms. Investigating organic compounds' distribution and adsorption mechanisms on optical component surfaces is fundamental to high-power laser-induced damage studies. These insights facilitate the efficient, non-destructive removal of organic contaminants from gold gratings, enhancing the energy output threshold of inertial confinement fusion devices.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"56 ","pages":"Article 105500"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024016560","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Organic contamination on gold pulse compression gratings significantly hampers the performance of high-power laser systems under intense laser irradiation. Investigating the adsorption mechanisms of organic contaminants on microstructured gratings is essential for addressing contamination issues and mitigating damage. In this article, we determine the microstructured surface aggregation characteristics of volatile dibutyl phthalate (DBP), the stratified distribution pattern of amorphous DBP clusters, and the distribution points of molecules within microstructures using experiments and cross-scale simulations (molecular dynamics and quantum chemistry). Our analysis of the Reduced Density Gradient (RDG) and charge transfer reveals that adsorption between organic molecules and the gold substrate primarily stems from non-covalent van der Waals and electrostatic forces induced by ester functional groups. Based on this theoretical study, we propose the "molecule-substrate" and "bimolecular" adsorption modes of DBP to elucidate the adsorption mechanisms. Investigating organic compounds' distribution and adsorption mechanisms on optical component surfaces is fundamental to high-power laser-induced damage studies. These insights facilitate the efficient, non-destructive removal of organic contaminants from gold gratings, enhancing the energy output threshold of inertial confinement fusion devices.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Surfaces and Interfaces
Surfaces and Interfaces Chemistry-General Chemistry
CiteScore
8.50
自引率
6.50%
发文量
753
审稿时长
35 days
期刊介绍: The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results. Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信