{"title":"Improved carboxylate density hydrochar by alkylation of surface phenol for adsorption of cationic dye in aqueous solution","authors":"Archana Rani , Monjuly Rongpipi , Akanksha Bhardwaj , Khadim Hussain , Meenu Arora , J․Nagendra Babu","doi":"10.1016/j.surfin.2024.105511","DOIUrl":null,"url":null,"abstract":"<div><div>Methylene blue (MB) adsorption in aqueous solution studied using rice straw derived hydrochar (RSH) and carboxylate functionalized hydrochar (RSHC) as adsorbent. RSHC with improved carboxylate functional group density was prepared by selective functionalization of phenolic oxygen functional groups present on RSH surface. The RSH and RSHC were characterized by ultimate and proximate analysis, Boehm Titration, <sup>13</sup>C CP-MAS SS NMR, XPS, SEM, BET surface area and zeta potential analysis. Batch adsorption experiments were optimized for MB adsorption were, adsorbent dose of 0.2 g/L, pH 8 and 7, respectively for RSH and RSHC, with 3.5 h contact time at 298 K. Nonlinear fit to Langmuir, Freundlich, Temkin, d-R models and Sips isotherm models, showed good fit with R<sup>2</sup>>0.95. RSHC (Q<sub>m</sub> = 434.6 mg/g) showed four-fold increase in MB adsorption as compared to the pristine hydrochar RSH (Q<sub>m</sub> =111.6 mg/g). Contact time study showed good nonlinear fit to pseudosecond order model indicating a strong interaction between hydrochar adsorbents and MB. Thermodynamics of MB adsorption (288–308 K) onto the surface of RSH and RSHC, is a spontaneous process with ∆G° -23.85 and -28.31 kJ/mol, respectively. RSH in characterized by enthalpy driven adsorption characteristic of proton-MB exchange, whereas in case of RSHC, <em>K</em><sup>+</sup>–MB exchange is entropically driven process.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"56 ","pages":"Article 105511"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024016663","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Methylene blue (MB) adsorption in aqueous solution studied using rice straw derived hydrochar (RSH) and carboxylate functionalized hydrochar (RSHC) as adsorbent. RSHC with improved carboxylate functional group density was prepared by selective functionalization of phenolic oxygen functional groups present on RSH surface. The RSH and RSHC were characterized by ultimate and proximate analysis, Boehm Titration, 13C CP-MAS SS NMR, XPS, SEM, BET surface area and zeta potential analysis. Batch adsorption experiments were optimized for MB adsorption were, adsorbent dose of 0.2 g/L, pH 8 and 7, respectively for RSH and RSHC, with 3.5 h contact time at 298 K. Nonlinear fit to Langmuir, Freundlich, Temkin, d-R models and Sips isotherm models, showed good fit with R2>0.95. RSHC (Qm = 434.6 mg/g) showed four-fold increase in MB adsorption as compared to the pristine hydrochar RSH (Qm =111.6 mg/g). Contact time study showed good nonlinear fit to pseudosecond order model indicating a strong interaction between hydrochar adsorbents and MB. Thermodynamics of MB adsorption (288–308 K) onto the surface of RSH and RSHC, is a spontaneous process with ∆G° -23.85 and -28.31 kJ/mol, respectively. RSH in characterized by enthalpy driven adsorption characteristic of proton-MB exchange, whereas in case of RSHC, K+–MB exchange is entropically driven process.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)