Chen Zhang , Dongsheng Chen , Yixin Luo , Yiming Yuan , Ying Wang , Zuobao Yang
{"title":"Engineering functional groups of ZnMn2O4/GO composite nanofibers for efficient and stable supercapacitors","authors":"Chen Zhang , Dongsheng Chen , Yixin Luo , Yiming Yuan , Ying Wang , Zuobao Yang","doi":"10.1016/j.surfin.2024.105517","DOIUrl":null,"url":null,"abstract":"<div><div>Spinel ZnMn<sub>2</sub>O<sub>4</sub> (ZMO) is a promising supercapacitor materials due to its high theoretical capacity, non-toxic, and more environmental benefits. However, traditional ZMO suffers from poor conductivity and instability, limiting its performance. To address these issues, we incorporated graphene oxide (GO) into ZMO, forming mesoporous ZMO/GO nanofibers (NFs) with a large specific surface area via electrospinning and further annealing. GO doping introduces oxygen-containing functional groups that add active sites for ion adsorption and increase electrode conductivity, as confirmed by COMSOL simulations, showing a rise in maximum current density from 6976 A m<sup>−2</sup> to 15705 A m<sup>−2</sup>. The NF structure also prevents GO aggregation, enhancing ion transport and stabilizing ZMO. Consequently, the ZMO/GO3 electrode achieves a high specific capacitance (1489.5 F g<sup>−1</sup> at 1 A g<sup>−1</sup> with 0.3 wt% GO) and excellent electrochemical performance. The asymmetric supercapacitor (ZMO/GO3//AC) with activated carbon achieves an energy density of 22.04 Wh kg<sup>−1</sup> at 799.84 W kg<sup>−1</sup> and retains 91.3 % capacitance after 5000 cycles at 5 A g<sup>−1</sup>, capable of powering an LED. This approach underscores ZMO's potential for high-power supercapacitor applications.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"56 ","pages":"Article 105517"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024016729","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Spinel ZnMn2O4 (ZMO) is a promising supercapacitor materials due to its high theoretical capacity, non-toxic, and more environmental benefits. However, traditional ZMO suffers from poor conductivity and instability, limiting its performance. To address these issues, we incorporated graphene oxide (GO) into ZMO, forming mesoporous ZMO/GO nanofibers (NFs) with a large specific surface area via electrospinning and further annealing. GO doping introduces oxygen-containing functional groups that add active sites for ion adsorption and increase electrode conductivity, as confirmed by COMSOL simulations, showing a rise in maximum current density from 6976 A m−2 to 15705 A m−2. The NF structure also prevents GO aggregation, enhancing ion transport and stabilizing ZMO. Consequently, the ZMO/GO3 electrode achieves a high specific capacitance (1489.5 F g−1 at 1 A g−1 with 0.3 wt% GO) and excellent electrochemical performance. The asymmetric supercapacitor (ZMO/GO3//AC) with activated carbon achieves an energy density of 22.04 Wh kg−1 at 799.84 W kg−1 and retains 91.3 % capacitance after 5000 cycles at 5 A g−1, capable of powering an LED. This approach underscores ZMO's potential for high-power supercapacitor applications.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)