Optimization and Scale-Up Synthesis of a Lappaconitine Alkaloid Derivative, QG3030, as a Novel Osteoanabolic Agent

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED
Heung Mo Kang, Chang Sang Moon, Yunchan Nam, Jiwoong Lim, Jiewan Kim, Tae-Hee Lee, Junho Lee, Mun Seog Chang, Jae Yeol Lee
{"title":"Optimization and Scale-Up Synthesis of a Lappaconitine Alkaloid Derivative, QG3030, as a Novel Osteoanabolic Agent","authors":"Heung Mo Kang, Chang Sang Moon, Yunchan Nam, Jiwoong Lim, Jiewan Kim, Tae-Hee Lee, Junho Lee, Mun Seog Chang, Jae Yeol Lee","doi":"10.1021/acs.oprd.4c00344","DOIUrl":null,"url":null,"abstract":"Our previous work revealed that the novel lappaconitine alkaloid derivative, <b>QG3030</b> (<b>6</b>), has an enhanced osteogenesis effect in the ovariectomized rat model without acute oral toxicity. <b>QG3030</b> (<b>6</b>) recently received approval for the Investigational New Drug application for its osteoporosis treatment from the Korean Ministry of Food and Drug Safety. Therefore, the need for an economical, large-scale production of <b>QG3030</b> (<b>6</b>) motivated the development of a novel synthetic procedure for its clinical studies. We herein report an efficient, safe, and cost-effective synthesis of <b>QG3030</b> (<b>6</b>) as a clinical candidate for osteoporosis treatment. As an optimized synthetic procedure, the reaction of lappaconitine·HBr (<b>1</b>·HBr, 1.0 kg scale) with co-oxidizing agents PhI(OAc)<sub>2</sub>-TEMPO (1.5 and 2 equiv) as a key step in a mixed EtOAc-acetone solution (v/v = 2/1) furnished α,β-unsaturated ketone (<b>4</b>), which was then treated with aq. NaOH to provide pure <b>QG3030</b> (<b>6</b>, 352 g) in 58% overall yield with a purity of 99.8% after crystallization from EtOH–CH<sub>2</sub>Cl<sub>2</sub>. This pilot synthetic procedure was performed three times, and the reproducible results were obtained with both nearly identical yields and purities.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"64 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00344","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Our previous work revealed that the novel lappaconitine alkaloid derivative, QG3030 (6), has an enhanced osteogenesis effect in the ovariectomized rat model without acute oral toxicity. QG3030 (6) recently received approval for the Investigational New Drug application for its osteoporosis treatment from the Korean Ministry of Food and Drug Safety. Therefore, the need for an economical, large-scale production of QG3030 (6) motivated the development of a novel synthetic procedure for its clinical studies. We herein report an efficient, safe, and cost-effective synthesis of QG3030 (6) as a clinical candidate for osteoporosis treatment. As an optimized synthetic procedure, the reaction of lappaconitine·HBr (1·HBr, 1.0 kg scale) with co-oxidizing agents PhI(OAc)2-TEMPO (1.5 and 2 equiv) as a key step in a mixed EtOAc-acetone solution (v/v = 2/1) furnished α,β-unsaturated ketone (4), which was then treated with aq. NaOH to provide pure QG3030 (6, 352 g) in 58% overall yield with a purity of 99.8% after crystallization from EtOH–CH2Cl2. This pilot synthetic procedure was performed three times, and the reproducible results were obtained with both nearly identical yields and purities.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信