{"title":"Stable and Efficient Red InP-Based QLEDs through Surface Passivation Strategies of Quantum Dots","authors":"Shuaibing Wang, Wanying Yang, Yu Li, Jie Chen, Yangyang Bian, Jilin Deng, Binbin Hu, Fei Chen, Huaibin Shen, Feng Teng, Chunhe Yang, Aiwei Tang","doi":"10.1021/acs.nanolett.4c04580","DOIUrl":null,"url":null,"abstract":"Indium phosphide (InP) is a representative of environmentally friendly quantum dots (QDs), and quantum dot light-emitting diodes (QLEDs) based on InP QDs are prime candidates for next-generation display applications. However, there are numerous nonradiative sites on the surface of InP QDs, which compromise the operational stability of QLEDs. Herein, we employed cysteamine (CTA) molecules for post-treatment of QD films, effectively passivating surface defects and nonradiative sites, thereby enhancing stability. This treatment enabled a long <i>T</i><sub>95</sub> lifetime of over 1,200 h at an initial luminance of 1,000 cd m<sup>–2</sup>. Additionally, CTA-treated QDs induced the formation of an interface dipole, elevating the energy levels of QDs and reducing the injection barrier for holes. Moreover, the dipole moment at the interface hindered electron injection, achieving a more balanced carrier injection in the device. Consequently, we achieved a peak external quantum efficiency (EQE) of 21.21%.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"12 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04580","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Indium phosphide (InP) is a representative of environmentally friendly quantum dots (QDs), and quantum dot light-emitting diodes (QLEDs) based on InP QDs are prime candidates for next-generation display applications. However, there are numerous nonradiative sites on the surface of InP QDs, which compromise the operational stability of QLEDs. Herein, we employed cysteamine (CTA) molecules for post-treatment of QD films, effectively passivating surface defects and nonradiative sites, thereby enhancing stability. This treatment enabled a long T95 lifetime of over 1,200 h at an initial luminance of 1,000 cd m–2. Additionally, CTA-treated QDs induced the formation of an interface dipole, elevating the energy levels of QDs and reducing the injection barrier for holes. Moreover, the dipole moment at the interface hindered electron injection, achieving a more balanced carrier injection in the device. Consequently, we achieved a peak external quantum efficiency (EQE) of 21.21%.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.