Yan Feng, Zhengming Shang, Junjie Wu, Haige Tan, Changlong Wang, Lizhen Huang, Ruimin Li, Shengtao Cui, Yi Liu, Yalin Lu, Haiou Li, Bin Xiang
{"title":"Crystal growth, ferromagnetism and electronic structure of van der Waals NbCo1.1Te2","authors":"Yan Feng, Zhengming Shang, Junjie Wu, Haige Tan, Changlong Wang, Lizhen Huang, Ruimin Li, Shengtao Cui, Yi Liu, Yalin Lu, Haiou Li, Bin Xiang","doi":"10.1016/j.jallcom.2024.177844","DOIUrl":null,"url":null,"abstract":"Recent advances in the synthesis of intercalated compounds have opened new avenues for exploring novel magnetic properties. This work focuses on the synthesis of high-quality single crystals of NbCo<sub>1.1</sub>Te<sub>2</sub>, achieved through a meticulously optimized chemical vapor transport method that facilitates effective cobalt intercalation into the van der Waals gaps of NbCoTe<sub>2</sub>. Comprehensive characterizations, including magnetic susceptibility, angle-resolved photoemission spectroscopy (ARPES), and magnetoresistance measurements, revealed pronounced room-temperature ferromagnetism and significant magnetic anisotropy, along with a confirmed metallic nature of NbCo<sub>1.1</sub>Te<sub>2</sub>. These findings underscore the transformative effects of cobalt intercalation on the physical properties of NbCo<sub>1.1</sub>Te<sub>2</sub>, demonstrating its promising potential for advanced electronic and spintronic applications, and laying the groundwork for future research on related materials.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"27 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177844","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advances in the synthesis of intercalated compounds have opened new avenues for exploring novel magnetic properties. This work focuses on the synthesis of high-quality single crystals of NbCo1.1Te2, achieved through a meticulously optimized chemical vapor transport method that facilitates effective cobalt intercalation into the van der Waals gaps of NbCoTe2. Comprehensive characterizations, including magnetic susceptibility, angle-resolved photoemission spectroscopy (ARPES), and magnetoresistance measurements, revealed pronounced room-temperature ferromagnetism and significant magnetic anisotropy, along with a confirmed metallic nature of NbCo1.1Te2. These findings underscore the transformative effects of cobalt intercalation on the physical properties of NbCo1.1Te2, demonstrating its promising potential for advanced electronic and spintronic applications, and laying the groundwork for future research on related materials.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.