Systemic coordination of whole-body tissue remodeling during local regeneration in sea anemones

IF 10.7 1区 生物学 Q1 CELL BIOLOGY
Stephanie Cheung, Danila Bredikhin, Tobias Gerber, Petrus J. Steenbergen, Soham Basu, Richard Bailleul, Pauline Hansen, Alexandre Paix, Matthew A. Benton, Hendrik C. Korswagen, Detlev Arendt, Oliver Stegle, Aissam Ikmi
{"title":"Systemic coordination of whole-body tissue remodeling during local regeneration in sea anemones","authors":"Stephanie Cheung, Danila Bredikhin, Tobias Gerber, Petrus J. Steenbergen, Soham Basu, Richard Bailleul, Pauline Hansen, Alexandre Paix, Matthew A. Benton, Hendrik C. Korswagen, Detlev Arendt, Oliver Stegle, Aissam Ikmi","doi":"10.1016/j.devcel.2024.11.001","DOIUrl":null,"url":null,"abstract":"The complexity of regeneration extends beyond local wound responses, eliciting systemic processes across the entire organism. However, the functional relevance and coordination of distant molecular processes remain unclear. In the cnidarian <em>Nematostella vectensis</em>, we show that local regeneration triggers a systemic homeostatic response, leading to coordinated whole-body remodeling. Leveraging spatial transcriptomics, endogenous protein tagging, and live imaging, we comprehensively dissect this systemic response at the organismal scale. We identify proteolysis as a critical process driven by both local and systemic upregulation of metalloproteases. We show that metalloproteinase expression levels and activity scale with the extent of tissue loss. This proportional response drives long-range tissue and extracellular matrix movement. Our findings demonstrate the adaptive nature of the systematic response in regeneration, enabling the organism to maintain shape homeostasis while coping with a wide range of injuries.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"195 1","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2024.11.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The complexity of regeneration extends beyond local wound responses, eliciting systemic processes across the entire organism. However, the functional relevance and coordination of distant molecular processes remain unclear. In the cnidarian Nematostella vectensis, we show that local regeneration triggers a systemic homeostatic response, leading to coordinated whole-body remodeling. Leveraging spatial transcriptomics, endogenous protein tagging, and live imaging, we comprehensively dissect this systemic response at the organismal scale. We identify proteolysis as a critical process driven by both local and systemic upregulation of metalloproteases. We show that metalloproteinase expression levels and activity scale with the extent of tissue loss. This proportional response drives long-range tissue and extracellular matrix movement. Our findings demonstrate the adaptive nature of the systematic response in regeneration, enabling the organism to maintain shape homeostasis while coping with a wide range of injuries.

Abstract Image

海葵局部再生过程中全身组织重塑的系统协调
再生的复杂性超越了局部伤口反应,引发了整个生物体的系统过程。然而,遥远分子过程的功能相关性和协调性仍不清楚。在刺胞线虫病中,我们发现局部再生触发系统稳态反应,导致协调的全身重塑。利用空间转录组学、内源性蛋白质标记和实时成像,我们在生物体尺度上全面剖析了这种系统反应。我们确定蛋白质水解是由局部和全身金属蛋白酶上调驱动的关键过程。我们发现,金属蛋白酶的表达水平和活性与组织损失的程度有关。这种比例反应驱动远距离组织和细胞外基质运动。我们的研究结果证明了再生系统反应的适应性,使生物体能够在应对各种损伤时保持形状稳态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Developmental cell
Developmental cell 生物-发育生物学
CiteScore
18.90
自引率
1.70%
发文量
203
审稿时长
3-6 weeks
期刊介绍: Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信