{"title":"Luminescence and scintillation characteristics of Ce3+ and Tb3+ co-doped SiO2 fiber for low-dose gamma radiation","authors":"Haoyu Li, Yollanda Bella Christy, Chao Xu, Xulin Luo, Yahui Li, Linfeng He, Qiang Guo, Gang-Ding Peng","doi":"10.1016/j.jallcom.2024.177840","DOIUrl":null,"url":null,"abstract":"Ce<sup>3+</sup> and Tb<sup>3+</sup> co-doped SiO<sub>2</sub> optical fibers (SCTF) were prepared using the modified chemical vapor deposition method. The optical and structural properties of the SCTF samples were investigated using refractive index measurements, energy dispersive X-ray spectroscopy, photoluminescence (PL), transmission loss, and fluorescence lifetime. The SCTF was fabricated into a radiation dosimeter, and its gamma radioluminescence (RL) response was studied over a dose rate range of 424.27 to 2095.16 mGy/min and a total dose range of 424.27 to 2095.16 mGy. The radiation response exhibited good linearity. To verify the repeatability of the dosimeter, repeated experiments were conducted at a fixed dose rate of 2095.16 mGy/min. The results demonstrated that the dosimeter has good repeatability. An energy transfer model in SCTF was established, and Ce/Tb-doped SiO<sub>2</sub> was prepared using a sol-gel method. The energy transfer model was verified by measuring its PL spectrum. The above results verify that the SCTF shifts the RL to a longer wavelength due to the energy transfer of radioluminescence, which is more conducive to the remote sensing and transmission of SiO<sub>2</sub> optical fiber in an irradiated environment.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"70 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177840","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ce3+ and Tb3+ co-doped SiO2 optical fibers (SCTF) were prepared using the modified chemical vapor deposition method. The optical and structural properties of the SCTF samples were investigated using refractive index measurements, energy dispersive X-ray spectroscopy, photoluminescence (PL), transmission loss, and fluorescence lifetime. The SCTF was fabricated into a radiation dosimeter, and its gamma radioluminescence (RL) response was studied over a dose rate range of 424.27 to 2095.16 mGy/min and a total dose range of 424.27 to 2095.16 mGy. The radiation response exhibited good linearity. To verify the repeatability of the dosimeter, repeated experiments were conducted at a fixed dose rate of 2095.16 mGy/min. The results demonstrated that the dosimeter has good repeatability. An energy transfer model in SCTF was established, and Ce/Tb-doped SiO2 was prepared using a sol-gel method. The energy transfer model was verified by measuring its PL spectrum. The above results verify that the SCTF shifts the RL to a longer wavelength due to the energy transfer of radioluminescence, which is more conducive to the remote sensing and transmission of SiO2 optical fiber in an irradiated environment.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.