Organosilica Nanodots Doped ZnO Cathode Interface Layer for Highly Efficient and Stable Inverted Polymer Solar Cells

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Luchan Huang, Zhuangzhuang Chen, Wenwen Chen, Qikun Rong, Na Li, Li Nian
{"title":"Organosilica Nanodots Doped ZnO Cathode Interface Layer for Highly Efficient and Stable Inverted Polymer Solar Cells","authors":"Luchan Huang, Zhuangzhuang Chen, Wenwen Chen, Qikun Rong, Na Li, Li Nian","doi":"10.1021/acsami.4c14315","DOIUrl":null,"url":null,"abstract":"Interfacial engineering is essential to achieve optical efficiencies and facilitate the industrialization of organic solar cells (OSCs). By doping organosilica nanodots (OSiNDs) into zinc oxide (ZnO), we have developed a hybrid ZnO/OSiNDs (4 wt %) cathode interface layer (CIL) that significantly enhances the overall performance of inverted organic solar cells (i-OSCs). In the PM6/BTP-eC9 active layer system, i-OSC devices with a ZnO/OSiNDs (4 wt %) CIL exhibit a superior power conversion efficiency (PCE) of 17.49%, surpassing that of reference devices with a pure ZnO CIL (15.88%). The OSiNDs not only modulate the work function of ZnO, thereby facilitating the carrier transport between ZnO interface and active layer, but also enhance device stability. After exposure to 1200 min of 100 mW/cm<sup>2</sup> illumination, including UV light, the devices retain 89.4% of their initial PCE, whereas devices based solely on ZnO retain only 57.7% under identical conditions. In this study, we present pioneering insights into the selection of environmentally friendly and cost-effective OSiNDs for modifying ZnO to create organic–inorganic hybrid coordination complexes as effective CILs.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"258 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c14315","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Interfacial engineering is essential to achieve optical efficiencies and facilitate the industrialization of organic solar cells (OSCs). By doping organosilica nanodots (OSiNDs) into zinc oxide (ZnO), we have developed a hybrid ZnO/OSiNDs (4 wt %) cathode interface layer (CIL) that significantly enhances the overall performance of inverted organic solar cells (i-OSCs). In the PM6/BTP-eC9 active layer system, i-OSC devices with a ZnO/OSiNDs (4 wt %) CIL exhibit a superior power conversion efficiency (PCE) of 17.49%, surpassing that of reference devices with a pure ZnO CIL (15.88%). The OSiNDs not only modulate the work function of ZnO, thereby facilitating the carrier transport between ZnO interface and active layer, but also enhance device stability. After exposure to 1200 min of 100 mW/cm2 illumination, including UV light, the devices retain 89.4% of their initial PCE, whereas devices based solely on ZnO retain only 57.7% under identical conditions. In this study, we present pioneering insights into the selection of environmentally friendly and cost-effective OSiNDs for modifying ZnO to create organic–inorganic hybrid coordination complexes as effective CILs.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信