Ubiquitous Liquid Metal 3D Printing: From Gas, Liquid to Rigid Media

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Xiaohui Shan, Weichen Feng, Ziliang Cui, Minghui Guo, Hongshi Huang, Jian Wang, Xiyu Zhu, Ruizhi Yuan, Yingjie Cao, Bo Wang, Huiyu Qiao, Xuelin Wang, Jing Liu
{"title":"Ubiquitous Liquid Metal 3D Printing: From Gas, Liquid to Rigid Media","authors":"Xiaohui Shan, Weichen Feng, Ziliang Cui, Minghui Guo, Hongshi Huang, Jian Wang, Xiyu Zhu, Ruizhi Yuan, Yingjie Cao, Bo Wang, Huiyu Qiao, Xuelin Wang, Jing Liu","doi":"10.1002/adfm.202421571","DOIUrl":null,"url":null,"abstract":"Liquid metals (LMs) are opening large spaces for achieving functional 3D printing. However, previous fabrication strategies ever developed so far can only address a specific printing task that has yet to fulfill various needs. Conceiving that all fabrications and their output quality are dominated by the interactions between printing inks and their ambient environment, this review is dedicated to presenting a generalized framework toward the ubiquitous LM 3D printing and summarizing its fabrication category thus integrated. A panoramic view is provided that intentionally administrating the interfacial interactions among different media can guide ink modification and printing optimization. Further, the interactions between LM inks and various media are interpreted, ranging from gases, and liquids to soft matters, biological tissues, and even rigid materials, exploring key mechanisms such as oxidation facilitation, heat dissipation, structural support, modulus matching, strong wettability, and high reactivity. Following that, the LM inks, typical printing technologies, diverse working media, and enabled applications are reviewed. The elucidation of these interactions, particularly physical and chemical effects, can lead to the incubation of future LM 3D printing centers. It is expected that interactional LM 3D printing can mold additive manufacturing into ever-powerful tools in the coming time.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"19 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421571","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Liquid metals (LMs) are opening large spaces for achieving functional 3D printing. However, previous fabrication strategies ever developed so far can only address a specific printing task that has yet to fulfill various needs. Conceiving that all fabrications and their output quality are dominated by the interactions between printing inks and their ambient environment, this review is dedicated to presenting a generalized framework toward the ubiquitous LM 3D printing and summarizing its fabrication category thus integrated. A panoramic view is provided that intentionally administrating the interfacial interactions among different media can guide ink modification and printing optimization. Further, the interactions between LM inks and various media are interpreted, ranging from gases, and liquids to soft matters, biological tissues, and even rigid materials, exploring key mechanisms such as oxidation facilitation, heat dissipation, structural support, modulus matching, strong wettability, and high reactivity. Following that, the LM inks, typical printing technologies, diverse working media, and enabled applications are reviewed. The elucidation of these interactions, particularly physical and chemical effects, can lead to the incubation of future LM 3D printing centers. It is expected that interactional LM 3D printing can mold additive manufacturing into ever-powerful tools in the coming time.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信