Fluoride and gallein regulate polyphosphate accumulation in dental caries-associated Lacticaseibacillus.

IF 2.6 4区 生物学 Q3 MICROBIOLOGY
Subhrangshu Mandal, Beverly E Flood, Mark Lunzer, Dhiraj Kumar, Jake V Bailey
{"title":"Fluoride and gallein regulate polyphosphate accumulation in dental caries-associated <i>Lacticaseibacillus</i>.","authors":"Subhrangshu Mandal, Beverly E Flood, Mark Lunzer, Dhiraj Kumar, Jake V Bailey","doi":"10.1099/mic.0.001519","DOIUrl":null,"url":null,"abstract":"<p><p>Inorganic polyphosphates (polyPs) are energy-storing biopolymers synthesized by all three domains of life. PolyP accumulation has been well studied with respect to its role in stress response, but its role in dental disease has received less attention. Dental decay can be promoted by changes in pH as well as the chemical activity of ions such as phosphate in oral fluids at the enamel interface. Previous work has shown that the drawdown of phosphate from biofilm fluids can alter the saturation state of oral fluids to thermodynamically favour mineral dissolution. The members of the Lactobacillaceae are known to accumulate polyP and play a role in early-stage and late-stage dental caries. In this study, we examined the effects of potential metabolic inhibitors on polyP accumulation in <i>Lacticaseibacillus rhamnosus</i>. We observed that two inhibitors of the enzyme responsible for polyP synthesis, gallein and fluoride, inhibited polyP accumulation in a balanced medium. However, fluoride and gallein treatments amended with either glucose or lactate were found to enhance polyP accumulation. These results illustrate the potential complexity of polyP metabolism in the oral environment.</p>","PeriodicalId":49819,"journal":{"name":"Microbiology-Sgm","volume":"170 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604172/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiology-Sgm","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1099/mic.0.001519","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic polyphosphates (polyPs) are energy-storing biopolymers synthesized by all three domains of life. PolyP accumulation has been well studied with respect to its role in stress response, but its role in dental disease has received less attention. Dental decay can be promoted by changes in pH as well as the chemical activity of ions such as phosphate in oral fluids at the enamel interface. Previous work has shown that the drawdown of phosphate from biofilm fluids can alter the saturation state of oral fluids to thermodynamically favour mineral dissolution. The members of the Lactobacillaceae are known to accumulate polyP and play a role in early-stage and late-stage dental caries. In this study, we examined the effects of potential metabolic inhibitors on polyP accumulation in Lacticaseibacillus rhamnosus. We observed that two inhibitors of the enzyme responsible for polyP synthesis, gallein and fluoride, inhibited polyP accumulation in a balanced medium. However, fluoride and gallein treatments amended with either glucose or lactate were found to enhance polyP accumulation. These results illustrate the potential complexity of polyP metabolism in the oral environment.

氟化物和加列林可调节龋齿相关乳酸杆菌中聚磷酸盐的积累。
无机聚磷酸盐(polyPs)是生命三大领域都会合成的储能生物聚合物。关于聚磷酸盐在应激反应中的作用,人们已经对其积累进行了深入研究,但对其在牙科疾病中的作用却关注较少。牙釉质界面处的 pH 值变化以及口腔液中磷酸盐等离子的化学活性可促进蛀牙。以前的研究表明,生物膜液体中磷酸盐的减少可以改变口腔液体的饱和状态,从而在热力学上有利于矿物质的溶解。众所周知,乳杆菌科成员会积累多聚磷酸盐,并在早期和晚期龋齿中发挥作用。在本研究中,我们研究了潜在代谢抑制剂对鼠李糖乳杆菌聚磷酸酯积累的影响。我们观察到,在平衡培养基中,负责合成 polyP 的酶的两种抑制剂--加列林和氟化物--抑制了 polyP 的积累。然而,我们发现,用葡萄糖或乳酸盐对氟化物和加列林进行处理后,会增强聚合酶的积累。这些结果说明了口腔环境中 polyP 代谢的潜在复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiology-Sgm
Microbiology-Sgm 生物-微生物学
CiteScore
4.60
自引率
7.10%
发文量
132
审稿时长
3.0 months
期刊介绍: We publish high-quality original research on bacteria, fungi, protists, archaea, algae, parasites and other microscopic life forms. Topics include but are not limited to: Antimicrobials and antimicrobial resistance Bacteriology and parasitology Biochemistry and biophysics Biofilms and biological systems Biotechnology and bioremediation Cell biology and signalling Chemical biology Cross-disciplinary work Ecology and environmental microbiology Food microbiology Genetics Host–microbe interactions Microbial methods and techniques Microscopy and imaging Omics, including genomics, proteomics and metabolomics Physiology and metabolism Systems biology and synthetic biology The microbiome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信