Andy J Lee, Lianna R Gangi, Yizhong Jenny Hu, Andreea T Dinescu, X Edward Guo, Chantelle C Bozynski, Keiichi Kuroki, Aaron M Stoker, Kacey G Marra, Gerard A Ateshian, James L Cook, Clark T Hung
{"title":"Evaluation of Dexamethasone-Eluting Cell-Seeded Constructs in a Preclinical Canine Model of Cartilage Repair.","authors":"Andy J Lee, Lianna R Gangi, Yizhong Jenny Hu, Andreea T Dinescu, X Edward Guo, Chantelle C Bozynski, Keiichi Kuroki, Aaron M Stoker, Kacey G Marra, Gerard A Ateshian, James L Cook, Clark T Hung","doi":"10.1089/ten.tea.2024.0244","DOIUrl":null,"url":null,"abstract":"<p><p>In this 12-month long, preclinical large animal study using a canine model, we report that engineered osteochondral grafts (comprised of allogeneic chondrocyte-seeded hydrogels with the capacity for sustained release of the corticosteroid dexamethasone [DEX], cultured to functional mechanical properties, and incorporated over porous titanium bases), can successfully repair damaged cartilage. DEX release from within engineered cartilage was hypothesized to improve initial cartilage repair by modulating the local inflammatory environment, which was also associated with suppressed degenerative changes exhibited by menisci and synovium. We note that not all histological and clinical outcomes at an intermediary time point of three months paralleled 12-month outcomes, which emphasizes the importance of <i>in vivo</i> studies in valid preclinical models that incorporate clinically relevant follow-up durations. Together, our study demonstrates that engineered cartilage fabricated under the conditions reported herein can repair full-thickness cartilage defects and promote synovial joint health and function.</p>","PeriodicalId":56375,"journal":{"name":"Tissue Engineering Part A","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering Part A","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.tea.2024.0244","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
In this 12-month long, preclinical large animal study using a canine model, we report that engineered osteochondral grafts (comprised of allogeneic chondrocyte-seeded hydrogels with the capacity for sustained release of the corticosteroid dexamethasone [DEX], cultured to functional mechanical properties, and incorporated over porous titanium bases), can successfully repair damaged cartilage. DEX release from within engineered cartilage was hypothesized to improve initial cartilage repair by modulating the local inflammatory environment, which was also associated with suppressed degenerative changes exhibited by menisci and synovium. We note that not all histological and clinical outcomes at an intermediary time point of three months paralleled 12-month outcomes, which emphasizes the importance of in vivo studies in valid preclinical models that incorporate clinically relevant follow-up durations. Together, our study demonstrates that engineered cartilage fabricated under the conditions reported herein can repair full-thickness cartilage defects and promote synovial joint health and function.
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.