Xiaoxu Lan, Xiao Wang, Liying Shao, Jiayue An, Simin Rong, Xiancong Yang, Hongfang Sun, Yan Liang, Ranran Wang, Shuyang Xie, Youjie Li
{"title":"Effect of Transferrin-Modified Fe<sub>3</sub>O<sub>4</sub> Nanoparticle Targeted Delivery miR-15a-5p Combined With Photothermal Therapy on Lung Cancer.","authors":"Xiaoxu Lan, Xiao Wang, Liying Shao, Jiayue An, Simin Rong, Xiancong Yang, Hongfang Sun, Yan Liang, Ranran Wang, Shuyang Xie, Youjie Li","doi":"10.1111/1759-7714.15497","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Existing studies have shown that transferrin receptor (TfR) is highly expressed on the surface of lung cancer cells, and nanoparticles (NPs) have been widely used as delivery vehicles. The aim of this study was to investigate the effect of the targeted delivery of Fe<sub>3</sub>O<sub>4</sub> NPs modified with transferrin (Tf) compared with photothermal treatment for lung cancer.</p><p><strong>Methods: </strong>The morphology and properties of Fe3O4 NPs modified with Tf were tested by internal morphological characterization experiments including transmission electron microscopy, particle size meter infrared spectrometer and other experiments. The delivery of materials was investigated by cell proliferation and apoptosis experiments, and western blot experiment was used to detect yes-associated protein 1(YAP1) protein expression changes after delivering miR-15a-5p. In addition, animal models were constructed to further explore the targeting properties of the material.</p><p><strong>Results: </strong>The results demonstrated that the nanomaterial has good stability and targeting properties. Meanwhile, we also discovered that the miR-15a-5p carried by NPs can inhibit cell growth after its entry to the lung cancer cells. The effect became more evident when the nanomaterials were assisted with laser therapy, as verified by in vivo and in vitro experiments. In terms of the related mechanism, miR-15a-5p inhibited YAP1 expression, which affected cell proliferation and apoptosis.</p><p><strong>Conclusion: </strong>In this study, Fe3O4 NPs modified with Tf delivered miR-15a-5p in combination with photothermal therapy for lung cancer. In future research, the targeted delivery of Tf and the photothermal synergy of nanomaterials will provide a theoretical basis for cancer treatment.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.15497","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Existing studies have shown that transferrin receptor (TfR) is highly expressed on the surface of lung cancer cells, and nanoparticles (NPs) have been widely used as delivery vehicles. The aim of this study was to investigate the effect of the targeted delivery of Fe3O4 NPs modified with transferrin (Tf) compared with photothermal treatment for lung cancer.
Methods: The morphology and properties of Fe3O4 NPs modified with Tf were tested by internal morphological characterization experiments including transmission electron microscopy, particle size meter infrared spectrometer and other experiments. The delivery of materials was investigated by cell proliferation and apoptosis experiments, and western blot experiment was used to detect yes-associated protein 1(YAP1) protein expression changes after delivering miR-15a-5p. In addition, animal models were constructed to further explore the targeting properties of the material.
Results: The results demonstrated that the nanomaterial has good stability and targeting properties. Meanwhile, we also discovered that the miR-15a-5p carried by NPs can inhibit cell growth after its entry to the lung cancer cells. The effect became more evident when the nanomaterials were assisted with laser therapy, as verified by in vivo and in vitro experiments. In terms of the related mechanism, miR-15a-5p inhibited YAP1 expression, which affected cell proliferation and apoptosis.
Conclusion: In this study, Fe3O4 NPs modified with Tf delivered miR-15a-5p in combination with photothermal therapy for lung cancer. In future research, the targeted delivery of Tf and the photothermal synergy of nanomaterials will provide a theoretical basis for cancer treatment.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.