{"title":"Hydrogen peroxide priming triggers splicing memory in grape berries.","authors":"Ding-Ding Zuo, Hao-Ting Sun, Lu Yang, Meng-Ling Zheng, Jing Zhang, Da-Long Guo","doi":"10.1007/s11103-024-01528-8","DOIUrl":null,"url":null,"abstract":"<p><p>Plants are highly sensitive to environmental changes, and alternative splicing (AS) has been described in many studies due to its important control role in stress response. Recent studies indicated that plants exhibit splicing memory to stress to effectively activate transcriptional adaptation. Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), as a reactive oxygen species (ROS), has toxic effects on plants. However, it also has a significant effect on promoting early maturity of 'Kyoho' grape at low concentrations. To explore the mechanism of priming treatment of H<sub>2</sub>O<sub>2</sub> showing better promotion effect, the RNA-Seq data of H<sub>2</sub>O<sub>2</sub>-primied and no-primied fruits were analyzed. The genes with H<sub>2</sub>O<sub>2</sub> stress splicing memory were identified, accompanied by changes in H3K4me3 modification levels, and their splicing memory patterns were verified by PCR and agarose gel electrophoresis. This finding establishes a link between alternative splicing memory and fruit ripening under H<sub>2</sub>O<sub>2</sub> regulation and contribute to develop the application of H<sub>2</sub>O<sub>2</sub> in fruit ripening.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":"114 6","pages":"129"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01528-8","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plants are highly sensitive to environmental changes, and alternative splicing (AS) has been described in many studies due to its important control role in stress response. Recent studies indicated that plants exhibit splicing memory to stress to effectively activate transcriptional adaptation. Hydrogen peroxide (H2O2), as a reactive oxygen species (ROS), has toxic effects on plants. However, it also has a significant effect on promoting early maturity of 'Kyoho' grape at low concentrations. To explore the mechanism of priming treatment of H2O2 showing better promotion effect, the RNA-Seq data of H2O2-primied and no-primied fruits were analyzed. The genes with H2O2 stress splicing memory were identified, accompanied by changes in H3K4me3 modification levels, and their splicing memory patterns were verified by PCR and agarose gel electrophoresis. This finding establishes a link between alternative splicing memory and fruit ripening under H2O2 regulation and contribute to develop the application of H2O2 in fruit ripening.
期刊介绍:
Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.