Jong Young Namgung , Jongmin Mun , Yeongjun Park , Jaeoh Kim , Bo-yong Park
{"title":"Sex differences in autism spectrum disorder using class imbalance adjusted functional connectivity","authors":"Jong Young Namgung , Jongmin Mun , Yeongjun Park , Jaeoh Kim , Bo-yong Park","doi":"10.1016/j.neuroimage.2024.120956","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) is an atypical neurodevelopmental condition with a diagnostic ratio largely differing between male and female participants. Due to the sex imbalance in participants with ASD, we lack an understanding of the differences in connectome organization of the brain between male and female participants with ASD. In this study, we matched the sex ratio using a Gaussian mixture model-based oversampling technique and investigated the differences in functional connectivity between male and female participants with ASD using low-dimensional principal gradients. Between-group comparisons of the gradient values revealed significant interaction effects of sex in the sensorimotor, attention, and default mode networks. The sex-related differences in the gradients were highly associated with higher-order cognitive control processes. Transcriptomic association analysis provided potential biological underpinnings, specifying gene enrichment in the cortex, thalamus, and striatum during development. Finally, the principal gradients were differentially associated with symptom severity of ASD between sexes, highlighting significant effects in female participants with ASD. Our work proposed an oversampling method to mitigate sex imbalance in ASD and observed significant sex-related differences in functional connectome organization. The findings may advance our knowledge about the sex heterogeneity in large-scale brain networks in ASD.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"304 ","pages":"Article 120956"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811924004531","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) is an atypical neurodevelopmental condition with a diagnostic ratio largely differing between male and female participants. Due to the sex imbalance in participants with ASD, we lack an understanding of the differences in connectome organization of the brain between male and female participants with ASD. In this study, we matched the sex ratio using a Gaussian mixture model-based oversampling technique and investigated the differences in functional connectivity between male and female participants with ASD using low-dimensional principal gradients. Between-group comparisons of the gradient values revealed significant interaction effects of sex in the sensorimotor, attention, and default mode networks. The sex-related differences in the gradients were highly associated with higher-order cognitive control processes. Transcriptomic association analysis provided potential biological underpinnings, specifying gene enrichment in the cortex, thalamus, and striatum during development. Finally, the principal gradients were differentially associated with symptom severity of ASD between sexes, highlighting significant effects in female participants with ASD. Our work proposed an oversampling method to mitigate sex imbalance in ASD and observed significant sex-related differences in functional connectome organization. The findings may advance our knowledge about the sex heterogeneity in large-scale brain networks in ASD.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.