TSC2-mTORC1 axis regulates morphogenesis and neurological function of Gli1+ adult-born dentate granule cells.

IF 3.1 3区 生物学 Q3 CELL BIOLOGY
Molecular Biology of the Cell Pub Date : 2025-01-01 Epub Date: 2024-11-27 DOI:10.1091/mbc.E24-08-0366
Max Kowalczyk, Yu-Ju Lee, Wei-Hsiang Huang
{"title":"TSC2-mTORC1 axis regulates morphogenesis and neurological function of Gli1<sup>+</sup> adult-born dentate granule cells.","authors":"Max Kowalczyk, Yu-Ju Lee, Wei-Hsiang Huang","doi":"10.1091/mbc.E24-08-0366","DOIUrl":null,"url":null,"abstract":"<p><p>Aberrant adult hippocampal neurogenesis is implicated in neurological and mood disorders associated with dysregulation of the mechanistic target of rapamycin (mTOR). Understanding how the mTOR pathway shapes the functional development of different subpopulations of adult-born hippocampal neural stem cells will enable insight into potential therapeutic pathways for these disorders. Here we study how loss of TSC2, a regulator of mTOR pathway and a causal gene for tuberous sclerosis complex (TSC), affects dentate gyrus granule cell morphogenesis and hippocampal-dependent function. We found that <i>Tsc2<sup>KO</sup></i> mice with TSC2 specifically ablated from Gli1<sup>+</sup> adult-born neural stem cells showed neuronal hypertrophy, reduced NEUN expression, increased dendritic arborization, premature cellular senescence, and hypervascularization of the dentate gyrus. Neurologically, <i>Tsc2<sup>KO</sup></i> mice showed altered exploratory behavior, impaired spatial learning, abnormal contextual recall, and hypersensitivity to kainic acid-induced seizures. Importantly, genetic reduction of <i>Raptor</i>, essential for mTORC1 signaling, rebalanced mTORC1 signaling and mitigated molecular, cellular, and neurological deficits in <i>Tsc2<sup>KO</sup></i> mice. This study uncovered functions of TSC2 in Gli1<sup>+</sup> adult-born neural stem cells and highlights RAPTOR as a potential therapeutic target for reversing disease features associated with <i>TSC2</i> mutations.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"br1"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742115/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-08-0366","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aberrant adult hippocampal neurogenesis is implicated in neurological and mood disorders associated with dysregulation of the mechanistic target of rapamycin (mTOR). Understanding how the mTOR pathway shapes the functional development of different subpopulations of adult-born hippocampal neural stem cells will enable insight into potential therapeutic pathways for these disorders. Here we study how loss of TSC2, a regulator of mTOR pathway and a causal gene for tuberous sclerosis complex (TSC), affects dentate gyrus granule cell morphogenesis and hippocampal-dependent function. We found that Tsc2KO mice with TSC2 specifically ablated from Gli1+ adult-born neural stem cells showed neuronal hypertrophy, reduced NEUN expression, increased dendritic arborization, premature cellular senescence, and hypervascularization of the dentate gyrus. Neurologically, Tsc2KO mice showed altered exploratory behavior, impaired spatial learning, abnormal contextual recall, and hypersensitivity to kainic acid-induced seizures. Importantly, genetic reduction of Raptor, essential for mTORC1 signaling, rebalanced mTORC1 signaling and mitigated molecular, cellular, and neurological deficits in Tsc2KO mice. This study uncovered functions of TSC2 in Gli1+ adult-born neural stem cells and highlights RAPTOR as a potential therapeutic target for reversing disease features associated with TSC2 mutations.

TSC2-mTORC1轴调控Gli1+成体天生齿状颗粒细胞的形态发生和神经功能。
成体海马神经发生异常与雷帕霉素机制靶标(mTOR)失调相关的神经和情绪疾病有关。了解mTOR通路如何影响成体海马神经干细胞不同亚群的功能发育,将有助于深入了解这些疾病的潜在治疗途径。TSC2是mTOR通路的调控因子,也是结节性硬化综合征(TSC)的致病基因,我们在此研究TSC2的缺失如何影响齿状回颗粒细胞(dGC)的形态发生和海马依赖性功能。我们发现,从Gli1+成体神经干细胞中特异性消减TSC2的Tsc2KO小鼠表现出神经元肥大、NEUN表达减少、树突轴化增加、细胞过早衰老以及齿状回(DG)血管过度扩张。在神经系统方面,Tsc2KO 小鼠表现出探索行为改变、空间学习受损、情境回忆异常以及对凯宁酸诱导的癫痫发作过敏。重要的是,Raptor是mTORC1信号转导所必需的,通过遗传减少Raptor可以重新平衡mTORC1信号转导,减轻Tsc2KO小鼠的分子、细胞和神经缺陷。这项研究揭示了TSC2在Gli1+成体神经干细胞中的功能,并强调RAPTOR是逆转TSC2突变相关疾病特征的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Biology of the Cell
Molecular Biology of the Cell 生物-细胞生物学
CiteScore
6.00
自引率
6.10%
发文量
402
审稿时长
2 months
期刊介绍: MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信