{"title":"GpsB interacts with FtsZ in multiple species and may serve as an accessory Z-ring anchor.","authors":"Dipanwita Bhattacharya, Asher King, Lily McKnight, Pilar Horigian, Prahathees J Eswara","doi":"10.1091/mbc.E24-07-0302","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial cytokinesis commences when a tubulin-like GTPase, FtsZ, forms a Z-ring to mark the division site. Synchronized movement of Z-ring filaments and peptidoglycan synthesis along the axis of division generates a division septum to separate the daughter cells. Thus, FtsZ needs to be linked to the peptidoglycan synthesis machinery. GpsB is a highly conserved protein among species of the Firmicutes phylum known to regulate peptidoglycan synthesis. Previously, we showed that GpsB directly binds to FtsZ by recognizing a signature sequence in its C-terminal tail (CTT) region. As the GpsB recognition sequence is also present in <i>Bacillus subtilis</i>, we speculated that GpsB may interact with FtsZ in this organism. Earlier reports revealed that disruption of <i>gpsB</i> and <i>ftsA</i> or <i>gpsB</i> and <i>ezrA</i> is deleterious. Given that both FtsA and EzrA also target the CTT of FtsZ for interaction, we hypothesized that in the absence of other FtsZ partners, GpsB-FtsZ interaction may become apparent. Our data confirms that is the case, and reveal that GpsB interacts with FtsZ in multiple species and stimulates the GTPase activity of the latter. Moreover, it appears that GpsB may serve as an accessory Z-ring anchor such as when FtsA, one of the main anchors, is absent.</p>","PeriodicalId":18735,"journal":{"name":"Molecular Biology of the Cell","volume":" ","pages":"mbcE24070302"},"PeriodicalIF":3.1000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology of the Cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-07-0302","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Bacterial cytokinesis commences when a tubulin-like GTPase, FtsZ, forms a Z-ring to mark the division site. Synchronized movement of Z-ring filaments and peptidoglycan synthesis along the axis of division generates a division septum to separate the daughter cells. Thus, FtsZ needs to be linked to the peptidoglycan synthesis machinery. GpsB is a highly conserved protein among species of the Firmicutes phylum known to regulate peptidoglycan synthesis. Previously, we showed that GpsB directly binds to FtsZ by recognizing a signature sequence in its C-terminal tail (CTT) region. As the GpsB recognition sequence is also present in Bacillus subtilis, we speculated that GpsB may interact with FtsZ in this organism. Earlier reports revealed that disruption of gpsB and ftsA or gpsB and ezrA is deleterious. Given that both FtsA and EzrA also target the CTT of FtsZ for interaction, we hypothesized that in the absence of other FtsZ partners, GpsB-FtsZ interaction may become apparent. Our data confirms that is the case, and reveal that GpsB interacts with FtsZ in multiple species and stimulates the GTPase activity of the latter. Moreover, it appears that GpsB may serve as an accessory Z-ring anchor such as when FtsA, one of the main anchors, is absent.
期刊介绍:
MBoC publishes research articles that present conceptual advances of broad interest and significance within all areas of cell, molecular, and developmental biology. We welcome manuscripts that describe advances with applications across topics including but not limited to: cell growth and division; nuclear and cytoskeletal processes; membrane trafficking and autophagy; organelle biology; quantitative cell biology; physical cell biology and mechanobiology; cell signaling; stem cell biology and development; cancer biology; cellular immunology and microbial pathogenesis; cellular neurobiology; prokaryotic cell biology; and cell biology of disease.