First principle calculations of structural, electronic, and optical properties of XSnO3(X: Ca, Mg, Sr) perovskite oxides.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Rekia Larbi, Ilhan Candan, Azad Cakmak, Omar Sahnoun, Mohamed Sahnoun
{"title":"First principle calculations of structural, electronic, and optical properties of XSnO<sub>3</sub>(X: Ca, Mg, Sr) perovskite oxides.","authors":"Rekia Larbi, Ilhan Candan, Azad Cakmak, Omar Sahnoun, Mohamed Sahnoun","doi":"10.1088/1361-648X/ad9805","DOIUrl":null,"url":null,"abstract":"<p><p>The perovskite oxides XSnO<sub>3</sub>have garnered significant attention due to their potential applications in various fields, including electronics, photonics, and renewable energy technologies. This study presents a comprehensive theoretical investigation of the structural, electronic, and optical properties of XSnO<sub>3</sub>(X: Ca, Mg, Sr) compounds with density functional theory based on the full potential linearized augmented plane wave method. Our analysis begins with thoroughly examining the structural stability and lattice parameters of XSnO<sub>3</sub>compounds, revealing their robust perovskite crystal structures. These compounds' lattice constants, total energy, bulk modulus, and cohesive energy were determined. Subsequently, we delve into the electronic properties of XSnO<sub>3</sub>, elucidating their electronic band structures, density of states, and charge densities. The studied compounds are indirect bandgap semiconductors having band gaps in the visible range. Furthermore, our investigation extends to the optical properties of XSnO<sub>3</sub>, encompassing absorption spectra, refractive indices, energy loss function, reflectivity, extinction coefficient, and dielectric functions across a wide range of wavelengths. Overall, the excellent optical properties of these compounds make them suitable for optoelectronic applications.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad9805","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

The perovskite oxides XSnO3have garnered significant attention due to their potential applications in various fields, including electronics, photonics, and renewable energy technologies. This study presents a comprehensive theoretical investigation of the structural, electronic, and optical properties of XSnO3(X: Ca, Mg, Sr) compounds with density functional theory based on the full potential linearized augmented plane wave method. Our analysis begins with thoroughly examining the structural stability and lattice parameters of XSnO3compounds, revealing their robust perovskite crystal structures. These compounds' lattice constants, total energy, bulk modulus, and cohesive energy were determined. Subsequently, we delve into the electronic properties of XSnO3, elucidating their electronic band structures, density of states, and charge densities. The studied compounds are indirect bandgap semiconductors having band gaps in the visible range. Furthermore, our investigation extends to the optical properties of XSnO3, encompassing absorption spectra, refractive indices, energy loss function, reflectivity, extinction coefficient, and dielectric functions across a wide range of wavelengths. Overall, the excellent optical properties of these compounds make them suitable for optoelectronic applications.

XSnO3 (X: Ca, Mg, Sr) 包晶氧化物的结构、电子和光学特性的第一性原理计算。
过氧化物 XSnO3 因其在电子学、光子学和可再生能源技术等多个领域的潜在应用而备受关注。本研究基于 Wien2k 软件包中实施的 FP-LAPW 方法,利用密度泛函理论对 XSnO3(X:Ca、Mg、Sr)化合物的结构、电子和光学特性进行了全面的理论研究。我们的分析从彻底检查 XSnO3 化合物的结构稳定性和晶格参数开始,揭示了其坚固的包晶体晶体结构。PBE-GGA 被用作交换和相关势。我们测定了这些化合物的晶格常数、总能、体积模量和内聚能。我们计算了这些结构的基态能量、晶格常数、状态密度(DOS)、带隙、光导率和介电常数。随后,我们深入研究了 XSnO3 的电子特性,阐明了它们的电子能带结构、状态密度(DOS)和电荷密度。计算得出的能带结构揭示了 XSnO3 化合物的内在电子特性,阐明了它们的导电性和在电子设备应用中的潜力。此外,我们的研究还扩展到了 XSnO3 的光学特性,包括各种波长的吸收光谱、折射率、能量损失函数、反射率、消光系数和介电函数。这些光学特性为了解 XSnO3 化合物中光与物质的相互作用机制提供了宝贵的见解,从而为开发高效光电设备提供了指导。总之,我们的理论研究为 XSnO3 化合物的基本性质提供了全面的见解,有助于探索它们在不同技术领域的应用。所有化合物都显示出半金属特征。这些结果与之前的研究和实验数据也非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信