Karishma Shah, Daniel Kracher, Peter Macheroux, Silvia Wallner, André Pick, Robert Kourist
{"title":"Discovery and characterization of NADH oxidases for selective sustainable synthesis of 5-hydroxymethylfuran carboxylic acid.","authors":"Karishma Shah, Daniel Kracher, Peter Macheroux, Silvia Wallner, André Pick, Robert Kourist","doi":"10.1016/j.jbiotec.2024.11.009","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient regeneration of NAD<sup>+</sup> remains a significant challenge for oxidative biotransformations. In order to identify enzymes with higher activity and stability, a panel of NADH oxidases (Nox) was investigated in the regeneration of nicotinamide cofactors for the oxidation of hydroxymethyl furfural (HMF) to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). We present novel Nox that exhibit remarkable catalytic activities, elevated thermal and pH stabilities, and higher intrinsic flavin loadings, thus eliminating the need for external flavin addition. The kinetic analysis of the NADH oxidases indicates that AdNox, GdNox, CmNox, and LvNox exhibit V<sub>max</sub> values of 86 U/mg, 50 U/mg, 4.3 U/mg, and 23 U/mg, respectively. When these NADH oxidases were applied in a HMF oxidation reaction, LvNox demonstrated the highest HMFCA yield of 97 % in the presence of 0.1 mM NAD and 10 mM HMF. In contrast to previously reported NADH oxidases from the same family, these NADH oxidases naturally accept NADPH as a substrate. Rapid kinetics experiments identified the oxidative reaction as the rate-limiting step of the reaction. NADH oxidases achieved high atom economy, a high reaction mass efficiency and a low process mass intensity. The findings contribute significantly to the field of biocatalysis and offer potential avenues for more environmentally friendly cofactor regeneration in chemical synthesis.</p>","PeriodicalId":15153,"journal":{"name":"Journal of biotechnology","volume":" ","pages":"18-28"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jbiotec.2024.11.009","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Efficient regeneration of NAD+ remains a significant challenge for oxidative biotransformations. In order to identify enzymes with higher activity and stability, a panel of NADH oxidases (Nox) was investigated in the regeneration of nicotinamide cofactors for the oxidation of hydroxymethyl furfural (HMF) to 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). We present novel Nox that exhibit remarkable catalytic activities, elevated thermal and pH stabilities, and higher intrinsic flavin loadings, thus eliminating the need for external flavin addition. The kinetic analysis of the NADH oxidases indicates that AdNox, GdNox, CmNox, and LvNox exhibit Vmax values of 86 U/mg, 50 U/mg, 4.3 U/mg, and 23 U/mg, respectively. When these NADH oxidases were applied in a HMF oxidation reaction, LvNox demonstrated the highest HMFCA yield of 97 % in the presence of 0.1 mM NAD and 10 mM HMF. In contrast to previously reported NADH oxidases from the same family, these NADH oxidases naturally accept NADPH as a substrate. Rapid kinetics experiments identified the oxidative reaction as the rate-limiting step of the reaction. NADH oxidases achieved high atom economy, a high reaction mass efficiency and a low process mass intensity. The findings contribute significantly to the field of biocatalysis and offer potential avenues for more environmentally friendly cofactor regeneration in chemical synthesis.
期刊介绍:
The Journal of Biotechnology has an open access mirror journal, the Journal of Biotechnology: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review.
The Journal provides a medium for the rapid publication of both full-length articles and short communications on novel and innovative aspects of biotechnology. The Journal will accept papers ranging from genetic or molecular biological positions to those covering biochemical, chemical or bioprocess engineering aspects as well as computer application of new software concepts, provided that in each case the material is directly relevant to biotechnological systems. Papers presenting information of a multidisciplinary nature that would not be suitable for publication in a journal devoted to a single discipline, are particularly welcome.