{"title":"Dual-phase nanoscissors disrupt vasculature-breast cancer stem cell crosstalk for breast cancer treatment.","authors":"Yao Qi, Shuai Lv, Changheng Xie, Shi Du, Jing Yao","doi":"10.1016/j.jconrel.2024.11.058","DOIUrl":null,"url":null,"abstract":"<p><p>Clinical treatment effects of breast cancer are heavily frustrated by the malignant crosstalk between tumor vasculature and breast cancer stem cells (BCSCs). This study introduces a two-phase therapeutic strategy targeting the interplay between tumor vasculature and BCSCs to overcome this challenge. Here, we an FLG/ZnPc nanoscissor, which combines mild photodynamic therapy (PDT) to generate reactive oxygen species (ROS) with vascular normalization therapy (VNT) to break the crosstalk between tumor vasculature and BCSCs. In the first phase, our approach breaks the vascular niche that supports BCSCs by restoring tumor vascular function and promoting ROS-induced BCSCs differentiation into less malignant forms, enhancing treatment sensitivity. The second phase employs high-impact photothermal therapy (PTT) to ablate tumor masses. This integrated \"mild PDT-PTT\" approach aims to reduce tumor growth and metastasis, offering a comprehensive strategy for effective breast cancer management.</p>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":" ","pages":"781-793"},"PeriodicalIF":10.5000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2024.11.058","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Clinical treatment effects of breast cancer are heavily frustrated by the malignant crosstalk between tumor vasculature and breast cancer stem cells (BCSCs). This study introduces a two-phase therapeutic strategy targeting the interplay between tumor vasculature and BCSCs to overcome this challenge. Here, we an FLG/ZnPc nanoscissor, which combines mild photodynamic therapy (PDT) to generate reactive oxygen species (ROS) with vascular normalization therapy (VNT) to break the crosstalk between tumor vasculature and BCSCs. In the first phase, our approach breaks the vascular niche that supports BCSCs by restoring tumor vascular function and promoting ROS-induced BCSCs differentiation into less malignant forms, enhancing treatment sensitivity. The second phase employs high-impact photothermal therapy (PTT) to ablate tumor masses. This integrated "mild PDT-PTT" approach aims to reduce tumor growth and metastasis, offering a comprehensive strategy for effective breast cancer management.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.