{"title":"The fertility recovering from heat stress and interactions of heat shock protein 20 with reproduction-related proteins in Monochamus alternatus.","authors":"Hui Li, Shouyin Li, Hualei Yang, Yushan Tan, Peiyuan Zhao, Jianren Ye, Dejun Hao","doi":"10.1111/1744-7917.13470","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the rise in global temperatures with climate change, insects, as ectotherms, critically depend on their heat tolerance for survival and reproduction. Heat shock proteins (HSPs) are essential for heat tolerance by averting protein denaturation; however, whether HSPs contribute to reproduction-related heat tolerance remains largely unexplored. The study investigated the reproductive heat tolerance and recovery of Monochamus alternatus, a major forestry pest, in response to heat stress. Alongside impairing the development and viability of reproductive organs and sperm, heat stress was also found to reduce fecundity, fertility, mating, and oviposition behaviors. Remarkably, all reproductive parameters of M. alternatus recovered within 4 weeks postexposure. To investigate the recovery mechanisms, we identified 10 reproduction-related proteins as candidate substrate proteins of an HSP protein in M. alternatus using immunoprecipitation coupled with mass spectrometry analysis. Heat stress inhibited the transcription of these reproduction-related genes, thereby adversely affecting reproductive parameters. However, the induction of HSP20s transcription in response to heat stress appeared to facilitate the refolding of these critical reproduction-related proteins during the recovery phase, thus preventing lasting reproductive damage. Overall, this study suggests that while M. alternatus populations might be vulnerable to climate-induced temperature increases, their fertility can recover, mediated by the interaction of HSPs with reproduction-related genes. These findings offer profound insights into insect heat tolerance and recovery, expanding our understanding of HSP20 proteins' biological functions.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13470","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the rise in global temperatures with climate change, insects, as ectotherms, critically depend on their heat tolerance for survival and reproduction. Heat shock proteins (HSPs) are essential for heat tolerance by averting protein denaturation; however, whether HSPs contribute to reproduction-related heat tolerance remains largely unexplored. The study investigated the reproductive heat tolerance and recovery of Monochamus alternatus, a major forestry pest, in response to heat stress. Alongside impairing the development and viability of reproductive organs and sperm, heat stress was also found to reduce fecundity, fertility, mating, and oviposition behaviors. Remarkably, all reproductive parameters of M. alternatus recovered within 4 weeks postexposure. To investigate the recovery mechanisms, we identified 10 reproduction-related proteins as candidate substrate proteins of an HSP protein in M. alternatus using immunoprecipitation coupled with mass spectrometry analysis. Heat stress inhibited the transcription of these reproduction-related genes, thereby adversely affecting reproductive parameters. However, the induction of HSP20s transcription in response to heat stress appeared to facilitate the refolding of these critical reproduction-related proteins during the recovery phase, thus preventing lasting reproductive damage. Overall, this study suggests that while M. alternatus populations might be vulnerable to climate-induced temperature increases, their fertility can recover, mediated by the interaction of HSPs with reproduction-related genes. These findings offer profound insights into insect heat tolerance and recovery, expanding our understanding of HSP20 proteins' biological functions.
期刊介绍:
Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.