1,25(OH)2D3-treated mouse bone marrow-derived dendritic cells alleviate autoimmune hepatitis in mice by improving TFR/TFH imbalance.

IF 2.9 4区 医学 Q3 IMMUNOLOGY
Juan Dai, Jianguo Song, Xueping Chen, Fei Ding, Yanbo Ding, Liang Ma, Liwen Zhang
{"title":"1,25(OH)<sub>2</sub>D<sub>3</sub>-treated mouse bone marrow-derived dendritic cells alleviate autoimmune hepatitis in mice by improving TFR/TFH imbalance.","authors":"Juan Dai, Jianguo Song, Xueping Chen, Fei Ding, Yanbo Ding, Liang Ma, Liwen Zhang","doi":"10.1080/08923973.2024.2435314","DOIUrl":null,"url":null,"abstract":"<p><p>Autoimmune hepatitis (AIH) is a chronic progressive autoimmune disease with unclear etiology. As a bioactive metabolite of Vitamin D, 1,25(OH)<sub>2</sub>D<sub>3</sub> can stimulate the production of tolerogenic dendritic cells (DCs) that overexpress programmed cell death ligand 1 (PD-L1). Although these cells have been shown to play a part in autoimmune diseases, their role in AIH remains unclear. This study aimed to investigate the potential effect of 1,25(OH)<sub>2</sub>D<sub>3</sub>-modulated DCs (PD-L1<sup>high</sup> VD3-DCs) in a murine model of experimental autoimmune hepatitis (EAH). Our results showed that intravenous injection of PD-L1<sup>high</sup> VD3-DCs significantly attenuated liver injury and EAH severity in mice. In addition, PD-L1<sup>high</sup> VD3-DC infusion improved the imbalance between splenic regulatory T cells (TFR) and follicular helper T (TFH) cells in EAH mice by increasing the number of TFR cells and restoring TFR/TFH ratio. Also, PD-L1<sup>high</sup> VD3-DC infusion selectively promoted TFR expansion and inhibited TFH differentiation. Furthermore, PD-L1<sup>high</sup> VD3-DC infusion increased TGF-β and IL-10 production, inhibited IL-21 secretion, upregulated key TFH transcriptional factors, and reduced the levels of serum immunoglobulins in EAH mice. To sum up, PD-L1<sup>high</sup> VD3-DC infusion could control EAH progression in mice by regulating TFR/TFH imbalance, indicating PD-L1<sup>high</sup> VD3-DC infusion might be a promising therapeutic approach for AIH treatment.</p>","PeriodicalId":13420,"journal":{"name":"Immunopharmacology and Immunotoxicology","volume":" ","pages":"1-11"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunopharmacology and Immunotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/08923973.2024.2435314","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Autoimmune hepatitis (AIH) is a chronic progressive autoimmune disease with unclear etiology. As a bioactive metabolite of Vitamin D, 1,25(OH)2D3 can stimulate the production of tolerogenic dendritic cells (DCs) that overexpress programmed cell death ligand 1 (PD-L1). Although these cells have been shown to play a part in autoimmune diseases, their role in AIH remains unclear. This study aimed to investigate the potential effect of 1,25(OH)2D3-modulated DCs (PD-L1high VD3-DCs) in a murine model of experimental autoimmune hepatitis (EAH). Our results showed that intravenous injection of PD-L1high VD3-DCs significantly attenuated liver injury and EAH severity in mice. In addition, PD-L1high VD3-DC infusion improved the imbalance between splenic regulatory T cells (TFR) and follicular helper T (TFH) cells in EAH mice by increasing the number of TFR cells and restoring TFR/TFH ratio. Also, PD-L1high VD3-DC infusion selectively promoted TFR expansion and inhibited TFH differentiation. Furthermore, PD-L1high VD3-DC infusion increased TGF-β and IL-10 production, inhibited IL-21 secretion, upregulated key TFH transcriptional factors, and reduced the levels of serum immunoglobulins in EAH mice. To sum up, PD-L1high VD3-DC infusion could control EAH progression in mice by regulating TFR/TFH imbalance, indicating PD-L1high VD3-DC infusion might be a promising therapeutic approach for AIH treatment.

经 1,25(OH)2D3处理的小鼠骨髓树突状细胞可通过改善TFR/TFH失衡缓解小鼠自身免疫性肝炎。
自身免疫性肝炎(AIH)是一种病因不明的慢性进行性自身免疫性疾病。作为维生素 D 的一种生物活性代谢产物,1,25(OH)2D3 可刺激产生过度表达程序性细胞死亡配体 1(PD-L1)的耐受性树突状细胞(DCs)。虽然这些细胞已被证明在自身免疫性疾病中发挥作用,但它们在 AIH 中的作用仍不清楚。本研究旨在探讨1,25(OH)2D3调节的DCs(PD-L1高VD3-DCs)在实验性自身免疫性肝炎(EAH)小鼠模型中的潜在作用。我们的研究结果表明,静脉注射 PD-L1high VD3-DCs 能显著减轻小鼠的肝损伤和 EAH 的严重程度。此外,输注 PD-L1high VD3-DC 还能通过增加 TFR 细胞数量和恢复 TFR/TFH 比率,改善 EAH 小鼠脾脏调节性 T 细胞(TFR)和滤泡辅助性 T 细胞(TFH)之间的失衡。同时,PD-L1 高的 VD3-DC 输注可选择性地促进 TFR 的扩增并抑制 TFH 的分化。此外,PD-L1高VD3-DC输注还能增加TGF-β和IL-10的产生,抑制IL-21的分泌,上调关键的TFH转录因子,并降低EAH小鼠血清免疫球蛋白的水平。总之,PD-L1高VD3-DC输注可通过调节TFR/TFH失衡来控制小鼠EAH的进展,这表明PD-L1高VD3-DC输注可能是治疗AIH的一种有前景的治疗方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
133
审稿时长
4-8 weeks
期刊介绍: The journal Immunopharmacology and Immunotoxicology is devoted to pre-clinical and clinical drug discovery and development targeting the immune system. Research related to the immunoregulatory effects of various compounds, including small-molecule drugs and biologics, on immunocompetent cells and immune responses, as well as the immunotoxicity exerted by xenobiotics and drugs. Only research that describe the mechanisms of specific compounds (not extracts) is of interest to the journal. The journal will prioritise preclinical and clinical studies on immunotherapy of disorders such as chronic inflammation, allergy, autoimmunity, cancer etc. The effects of small-drugs, vaccines and biologics against central immunological targets as well as cell-based therapy, including dendritic cell therapy, T cell adoptive transfer and stem cell therapy, are topics of particular interest. Publications pointing towards potential new drug targets within the immune system or novel technology for immunopharmacological drug development are also welcome. With an immunoscience focus on drug development, immunotherapy and toxicology, the journal will cover areas such as infection, allergy, inflammation, tumor immunology, degenerative disorders, immunodeficiencies, neurology, atherosclerosis and more. Immunopharmacology and Immunotoxicology will accept original manuscripts, brief communications, commentaries, mini-reviews, reviews, clinical trials and clinical cases, on the condition that the results reported are based on original, clinical, or basic research that has not been published elsewhere in any journal in any language (except in abstract form relating to paper communicated to scientific meetings and symposiums).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信