Denise V M Sousa, Fabiano V Pereira, Ricardo M Orlando
{"title":"Enhancing Doxorubicin Detection: Multiphase Electroextraction for Efficient and Affordable UHPLC-DAD Analysis in Saliva.","authors":"Denise V M Sousa, Fabiano V Pereira, Ricardo M Orlando","doi":"10.1002/elps.202400094","DOIUrl":null,"url":null,"abstract":"<p><p>Attesting optimal drug concentrations in biological fluids is crucial to ensure precise dosage adjustment, to guarantee therapy adherence, and to manage side effects in chemotherapy. Accurate drug determination relies on liquid chromatography and advanced detectors, with sample preparation playing a pivotal role, especially in complex matrices such as biological fluids. This study introduces a multiphase electroextraction (MPEE) of doxorubicin (DOX) in saliva by utilizing a paper point, followed by ultra-high-performance liquid chromatography coupled to diode array detection. The extraction time and electric potential were carried out by using the Doehlert optimization approach, whereas the desorption solvent was fine-tuned through the centroid-simplex experimental design. After optimization, DOX and the internal standard were extracted in 35 min, utilizing an applied voltage of 300 V and a multiwell plate capable of simultaneous extraction of 66 samples. The recovery was 87%-101%, with a linear range between 50 and 500 µg L<sup>-1</sup> (R<sup>2</sup> > 0.999). The intra- and inter-assay coefficients of variation for precision were <10%, and the limit of detection and limit of quantification were 25 and 50 µg L<sup>-</sup>¹, respectively. When applied to five different fortified saliva samples, there were no statistically significant differences in the detected concentrations. Although the enrichment factor (0.6) was not as high as expected, the other results confirm that the method obtained is suitable for monitoring DOX in this complex matrix and can contribute to further developments in sample preparation using MPEE approaches.</p>","PeriodicalId":11596,"journal":{"name":"ELECTROPHORESIS","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ELECTROPHORESIS","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/elps.202400094","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Attesting optimal drug concentrations in biological fluids is crucial to ensure precise dosage adjustment, to guarantee therapy adherence, and to manage side effects in chemotherapy. Accurate drug determination relies on liquid chromatography and advanced detectors, with sample preparation playing a pivotal role, especially in complex matrices such as biological fluids. This study introduces a multiphase electroextraction (MPEE) of doxorubicin (DOX) in saliva by utilizing a paper point, followed by ultra-high-performance liquid chromatography coupled to diode array detection. The extraction time and electric potential were carried out by using the Doehlert optimization approach, whereas the desorption solvent was fine-tuned through the centroid-simplex experimental design. After optimization, DOX and the internal standard were extracted in 35 min, utilizing an applied voltage of 300 V and a multiwell plate capable of simultaneous extraction of 66 samples. The recovery was 87%-101%, with a linear range between 50 and 500 µg L-1 (R2 > 0.999). The intra- and inter-assay coefficients of variation for precision were <10%, and the limit of detection and limit of quantification were 25 and 50 µg L-¹, respectively. When applied to five different fortified saliva samples, there were no statistically significant differences in the detected concentrations. Although the enrichment factor (0.6) was not as high as expected, the other results confirm that the method obtained is suitable for monitoring DOX in this complex matrix and can contribute to further developments in sample preparation using MPEE approaches.
期刊介绍:
ELECTROPHORESIS is an international journal that publishes original manuscripts on all aspects of electrophoresis, and liquid phase separations (e.g., HPLC, micro- and nano-LC, UHPLC, micro- and nano-fluidics, liquid-phase micro-extractions, etc.).
Topics include new or improved analytical and preparative methods, sample preparation, development of theory, and innovative applications of electrophoretic and liquid phase separations methods in the study of nucleic acids, proteins, carbohydrates natural products, pharmaceuticals, food analysis, environmental species and other compounds of importance to the life sciences.
Papers in the areas of microfluidics and proteomics, which are not limited to electrophoresis-based methods, will also be accepted for publication. Contributions focused on hyphenated and omics techniques are also of interest. Proteomics is within the scope, if related to its fundamentals and new technical approaches. Proteomics applications are only considered in particular cases.
Papers describing the application of standard electrophoretic methods will not be considered.
Papers on nanoanalysis intended for publication in ELECTROPHORESIS should focus on one or more of the following topics:
• Nanoscale electrokinetics and phenomena related to electric double layer and/or confinement in nano-sized geometry
• Single cell and subcellular analysis
• Nanosensors and ultrasensitive detection aspects (e.g., involving quantum dots, "nanoelectrodes" or nanospray MS)
• Nanoscale/nanopore DNA sequencing (next generation sequencing)
• Micro- and nanoscale sample preparation
• Nanoparticles and cells analyses by dielectrophoresis
• Separation-based analysis using nanoparticles, nanotubes and nanowires.