Xingdong Wu , Chunxue Gao , Ya Huang , Lin Qin , Zhou Yang , Di Wu , Ya Wang , Qianru Zhang , Daopeng Tan , Yongxia Zhao , Jiajia Wu , Shanyong Yi , Yanliu Lu , Yuqi He
{"title":"Pharmacokinetics and tissue distribution of key sesquiterpene glycosides in Dendrobium nobile analyzed by UHPLC-Q-Trap-MS/MS","authors":"Xingdong Wu , Chunxue Gao , Ya Huang , Lin Qin , Zhou Yang , Di Wu , Ya Wang , Qianru Zhang , Daopeng Tan , Yongxia Zhao , Jiajia Wu , Shanyong Yi , Yanliu Lu , Yuqi He","doi":"10.1016/j.jchromb.2024.124386","DOIUrl":null,"url":null,"abstract":"<div><div><em>Dendrobium nobile</em> (<em>D. nobile</em>), a traditional herb known for its immunomodulatory and neuroprotective properties, contains characteristic alkaloids and sesquiterpene glycosides. While alkaloids have been extensively studied, research on sesquiterpene glycosides remains limited. This study established and validated a UHPLC-Q-Trap-MS/MS method for detecting six sesquiterpene glycosides in <em>D. nobile</em>, applying it to pharmacokinetic and tissue distribution studies in rats following oral administration of the <em>D. nobile</em> aqueous extract. Plasma and tissue samples were prepared using methanol for protein precipitation and separated on a Waters Acquity UPLC BEH C18 column. Quantification was performed using multiple reaction monitoring (MRM) in negative electrospray ionization (ESI) mode. Method validation demonstrated specificity, selectivity, precision, accuracy, stability, matrix effects, and recovery rates meeting the criteria for <em>in vivo</em> drug analysis. Pharmacokinetic results indicated that dendronobiloside A, dendronobiloside C, and dendronobiloside D were rapidly absorbed with low plasma concentrations and quick elimination. In contrast, dendronobiloside E, dendroside G, and dendromoniliside D were rapidly absorbed with higher plasma concentrations but also eliminated quickly. Tissue distribution studies revealed that dendronobiloside A, C, and D were detectable in the heart, liver, spleen, lungs, kidneys, stomach, large intestine, small intestine, thymus, and pancreas, but almost undetectable in the brain. And dendronobiloside E, dendroside G, and dendromoniliside D were detectable in all tissues. Overall, the six sesquiterpene glycosides reached various tissues within 2 h of administration, with distribution levels ranked as follows: small intestine > stomach > large intestine > pancreas > lungs > kidneys > liver > heart > thymus > spleen > brain. These findings provide insights into the immunomodulatory mechanisms of <em>D. nobile</em> sesquiterpene glycosides and inform clinical dosing considerations.</div></div>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1250 ","pages":"Article 124386"},"PeriodicalIF":2.8000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570023224003957","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Dendrobium nobile (D. nobile), a traditional herb known for its immunomodulatory and neuroprotective properties, contains characteristic alkaloids and sesquiterpene glycosides. While alkaloids have been extensively studied, research on sesquiterpene glycosides remains limited. This study established and validated a UHPLC-Q-Trap-MS/MS method for detecting six sesquiterpene glycosides in D. nobile, applying it to pharmacokinetic and tissue distribution studies in rats following oral administration of the D. nobile aqueous extract. Plasma and tissue samples were prepared using methanol for protein precipitation and separated on a Waters Acquity UPLC BEH C18 column. Quantification was performed using multiple reaction monitoring (MRM) in negative electrospray ionization (ESI) mode. Method validation demonstrated specificity, selectivity, precision, accuracy, stability, matrix effects, and recovery rates meeting the criteria for in vivo drug analysis. Pharmacokinetic results indicated that dendronobiloside A, dendronobiloside C, and dendronobiloside D were rapidly absorbed with low plasma concentrations and quick elimination. In contrast, dendronobiloside E, dendroside G, and dendromoniliside D were rapidly absorbed with higher plasma concentrations but also eliminated quickly. Tissue distribution studies revealed that dendronobiloside A, C, and D were detectable in the heart, liver, spleen, lungs, kidneys, stomach, large intestine, small intestine, thymus, and pancreas, but almost undetectable in the brain. And dendronobiloside E, dendroside G, and dendromoniliside D were detectable in all tissues. Overall, the six sesquiterpene glycosides reached various tissues within 2 h of administration, with distribution levels ranked as follows: small intestine > stomach > large intestine > pancreas > lungs > kidneys > liver > heart > thymus > spleen > brain. These findings provide insights into the immunomodulatory mechanisms of D. nobile sesquiterpene glycosides and inform clinical dosing considerations.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.