Katarzyna Bejtka, Marco Fontana, Cecilia Irene Gho, Stefan Merkens, Andrey Chuvilin, Candido Fabrizio Pirri, Angelica Chiodoni
{"title":"Electrochemical Liquid Phase TEM in Aqueous Electrolytes for Energy Applications: the Role of Liquid Flow Configuration.","authors":"Katarzyna Bejtka, Marco Fontana, Cecilia Irene Gho, Stefan Merkens, Andrey Chuvilin, Candido Fabrizio Pirri, Angelica Chiodoni","doi":"10.1002/smtd.202401718","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical liquid phase transmission electron microscopy (EC-LPTEM) is an invaluable tool for investigating the structural and morphological properties of functional materials in electrochemical systems for energy transition. Despite its potential, standardized experimental protocols and a consensus on data interpretation are lacking, due to a variety of commercial and customized electrical and microfluidic configurations. Given the small size of a typical electrochemical cell used in these experiments, frequent electrolyte renewal is crucial to minimize local chemical alterations from reactions and radiolysis. This study explores the effects of modifying the flow configuration within the liquid cell under experimental conditions relevant for energy applications in aqueous-based electrolytes, revealing how changes in mass transport dynamics drastically influence the electrochemical response of the cell. Two different cell designs are compared: convection- and diffusion-governed. Ex situ and in situ comparative flow experiments show that the diffusion cell mitigates gas bubbles formation and improves removal of gaseous products. The electrodeposition of Zn nanostructures and the characterization of a Cu-based catalyst are presented as proof-of-concept experiments for energy storage and CO<sub>2</sub> reduction reaction (CO2RR) applications, respectively. The reported findings demonstrate that controlling mass transport in the liquid cell setup is crucial to obtain reliable operando experimental electrochemical conditions.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401718"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401718","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical liquid phase transmission electron microscopy (EC-LPTEM) is an invaluable tool for investigating the structural and morphological properties of functional materials in electrochemical systems for energy transition. Despite its potential, standardized experimental protocols and a consensus on data interpretation are lacking, due to a variety of commercial and customized electrical and microfluidic configurations. Given the small size of a typical electrochemical cell used in these experiments, frequent electrolyte renewal is crucial to minimize local chemical alterations from reactions and radiolysis. This study explores the effects of modifying the flow configuration within the liquid cell under experimental conditions relevant for energy applications in aqueous-based electrolytes, revealing how changes in mass transport dynamics drastically influence the electrochemical response of the cell. Two different cell designs are compared: convection- and diffusion-governed. Ex situ and in situ comparative flow experiments show that the diffusion cell mitigates gas bubbles formation and improves removal of gaseous products. The electrodeposition of Zn nanostructures and the characterization of a Cu-based catalyst are presented as proof-of-concept experiments for energy storage and CO2 reduction reaction (CO2RR) applications, respectively. The reported findings demonstrate that controlling mass transport in the liquid cell setup is crucial to obtain reliable operando experimental electrochemical conditions.
Small MethodsMaterials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍:
Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques.
With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community.
The online ISSN for Small Methods is 2366-9608.