Electrochemical Liquid Phase TEM in Aqueous Electrolytes for Energy Applications: the Role of Liquid Flow Configuration.

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL
Katarzyna Bejtka, Marco Fontana, Cecilia Irene Gho, Stefan Merkens, Andrey Chuvilin, Candido Fabrizio Pirri, Angelica Chiodoni
{"title":"Electrochemical Liquid Phase TEM in Aqueous Electrolytes for Energy Applications: the Role of Liquid Flow Configuration.","authors":"Katarzyna Bejtka, Marco Fontana, Cecilia Irene Gho, Stefan Merkens, Andrey Chuvilin, Candido Fabrizio Pirri, Angelica Chiodoni","doi":"10.1002/smtd.202401718","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical liquid phase transmission electron microscopy (EC-LPTEM) is an invaluable tool for investigating the structural and morphological properties of functional materials in electrochemical systems for energy transition. Despite its potential, standardized experimental protocols and a consensus on data interpretation are lacking, due to a variety of commercial and customized electrical and microfluidic configurations. Given the small size of a typical electrochemical cell used in these experiments, frequent electrolyte renewal is crucial to minimize local chemical alterations from reactions and radiolysis. This study explores the effects of modifying the flow configuration within the liquid cell under experimental conditions relevant for energy applications in aqueous-based electrolytes, revealing how changes in mass transport dynamics drastically influence the electrochemical response of the cell. Two different cell designs are compared: convection- and diffusion-governed. Ex situ and in situ comparative flow experiments show that the diffusion cell mitigates gas bubbles formation and improves removal of gaseous products. The electrodeposition of Zn nanostructures and the characterization of a Cu-based catalyst are presented as proof-of-concept experiments for energy storage and CO<sub>2</sub> reduction reaction (CO2RR) applications, respectively. The reported findings demonstrate that controlling mass transport in the liquid cell setup is crucial to obtain reliable operando experimental electrochemical conditions.</p>","PeriodicalId":229,"journal":{"name":"Small Methods","volume":" ","pages":"e2401718"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small Methods","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smtd.202401718","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical liquid phase transmission electron microscopy (EC-LPTEM) is an invaluable tool for investigating the structural and morphological properties of functional materials in electrochemical systems for energy transition. Despite its potential, standardized experimental protocols and a consensus on data interpretation are lacking, due to a variety of commercial and customized electrical and microfluidic configurations. Given the small size of a typical electrochemical cell used in these experiments, frequent electrolyte renewal is crucial to minimize local chemical alterations from reactions and radiolysis. This study explores the effects of modifying the flow configuration within the liquid cell under experimental conditions relevant for energy applications in aqueous-based electrolytes, revealing how changes in mass transport dynamics drastically influence the electrochemical response of the cell. Two different cell designs are compared: convection- and diffusion-governed. Ex situ and in situ comparative flow experiments show that the diffusion cell mitigates gas bubbles formation and improves removal of gaseous products. The electrodeposition of Zn nanostructures and the characterization of a Cu-based catalyst are presented as proof-of-concept experiments for energy storage and CO2 reduction reaction (CO2RR) applications, respectively. The reported findings demonstrate that controlling mass transport in the liquid cell setup is crucial to obtain reliable operando experimental electrochemical conditions.

用于能源应用的水性电解质中的电化学液相 TEM:液流配置的作用。
电化学液相透射电子显微镜(EC-LPTEM)是研究能源转换电化学系统中功能材料结构和形态特性的宝贵工具。尽管电化学液相透射电子显微镜具有巨大的潜力,但由于存在各种商用和定制的电学和微流体配置,因此缺乏标准化的实验方案和对数据解读的共识。鉴于这些实验中使用的典型电化学电池尺寸较小,因此电解质的频繁更新对于最大限度地减少反应和辐射分解引起的局部化学变化至关重要。本研究探讨了在水基电解质能源应用的相关实验条件下,改变液体池内流动配置的效果,揭示了质量传输动力学的变化如何极大地影响池的电化学响应。比较了两种不同的电池设计:对流式和扩散式。原位和原位对比流动实验表明,扩散电池可减少气泡的形成并改善气态产物的去除。作为概念验证实验,介绍了锌纳米结构的电沉积和铜基催化剂的特性,分别用于能量存储和二氧化碳还原反应(CO2RR)应用。报告的研究结果表明,控制液池设置中的质量传输对于获得可靠的操作性实验电化学条件至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Small Methods
Small Methods Materials Science-General Materials Science
CiteScore
17.40
自引率
1.60%
发文量
347
期刊介绍: Small Methods is a multidisciplinary journal that publishes groundbreaking research on methods relevant to nano- and microscale research. It welcomes contributions from the fields of materials science, biomedical science, chemistry, and physics, showcasing the latest advancements in experimental techniques. With a notable 2022 Impact Factor of 12.4 (Journal Citation Reports, Clarivate Analytics, 2023), Small Methods is recognized for its significant impact on the scientific community. The online ISSN for Small Methods is 2366-9608.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信