Paul G Helfrich, Johnathan Feldman, Eva Andrade-Barahona, Isaiah Robertson, Jordan Foster, Renee Hofacker, Gavin Dahlquist Selking, Cody S Sheik, Alysia Cox
{"title":"Aqueous copper geochemistry shapes the sediment microbial resistome in a recovering stream","authors":"Paul G Helfrich, Johnathan Feldman, Eva Andrade-Barahona, Isaiah Robertson, Jordan Foster, Renee Hofacker, Gavin Dahlquist Selking, Cody S Sheik, Alysia Cox","doi":"10.1111/1758-2229.70045","DOIUrl":null,"url":null,"abstract":"<p>Aqueous metals are pervasive contaminants associated with historical mining. We produced and examined 16 metagenomes from a contaminated creek to investigate how anthropogenic metal contamination shapes the functional profiles of microbial communities. We then incorporated the metagenomic profiles and concurrently collected geochemical context into a multivariate model to examine correlations between stream geochemistry and microbial functional potential. Integrating the metagenomes with full geochemical profiles emphasised that even low metalloid concentrations shaped microbial functionality, seasonal shifts in copper bioavailability and arsenic exposure correlated with genetic variation, and copper resistomes were spatiotemporally distinct. This study provides new insights into microbial metabolic potential and microbe-metal(loid) interactions.</p>","PeriodicalId":163,"journal":{"name":"Environmental Microbiology Reports","volume":"16 6","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1758-2229.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiology Reports","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1758-2229.70045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Aqueous metals are pervasive contaminants associated with historical mining. We produced and examined 16 metagenomes from a contaminated creek to investigate how anthropogenic metal contamination shapes the functional profiles of microbial communities. We then incorporated the metagenomic profiles and concurrently collected geochemical context into a multivariate model to examine correlations between stream geochemistry and microbial functional potential. Integrating the metagenomes with full geochemical profiles emphasised that even low metalloid concentrations shaped microbial functionality, seasonal shifts in copper bioavailability and arsenic exposure correlated with genetic variation, and copper resistomes were spatiotemporally distinct. This study provides new insights into microbial metabolic potential and microbe-metal(loid) interactions.
期刊介绍:
The journal is identical in scope to Environmental Microbiology, shares the same editorial team and submission site, and will apply the same high level acceptance criteria. The two journals will be mutually supportive and evolve side-by-side.
Environmental Microbiology Reports provides a high profile vehicle for publication of the most innovative, original and rigorous research in the field. The scope of the Journal encompasses the diversity of current research on microbial processes in the environment, microbial communities, interactions and evolution and includes, but is not limited to, the following:
the structure, activities and communal behaviour of microbial communities
microbial community genetics and evolutionary processes
microbial symbioses, microbial interactions and interactions with plants, animals and abiotic factors
microbes in the tree of life, microbial diversification and evolution
population biology and clonal structure
microbial metabolic and structural diversity
microbial physiology, growth and survival
microbes and surfaces, adhesion and biofouling
responses to environmental signals and stress factors
modelling and theory development
pollution microbiology
extremophiles and life in extreme and unusual little-explored habitats
element cycles and biogeochemical processes, primary and secondary production
microbes in a changing world, microbially-influenced global changes
evolution and diversity of archaeal and bacterial viruses
new technological developments in microbial ecology and evolution, in particular for the study of activities of microbial communities, non-culturable microorganisms and emerging pathogens.