{"title":"Preparation of matrix-matched calibration standards for accurate determination of elemental concentrations in uric acid stones by LA-ICP-MS","authors":"Qingling Zhou, Xinyi Chen, Duoduo Ao, Hui Hu, Jianzong Zhou, Yongmei Hu, Wanqing Yang, Yuqiu Ke, Xiaoqing Yi and Hui Xu","doi":"10.1039/D4AY01440E","DOIUrl":null,"url":null,"abstract":"<p >Accurate determination of elemental concentrations in uric acid (UA) stones is crucial for understanding their formation process. However, the lack of matrix-matched calibration standards has limited the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in this field. This study addresses this limitation by preparing a synthetic UA precipitate (UA-1) doped with 17 elements using a recrystallization method. Reference concentrations of these elements were measured using pneumatic nebulization-ICP-MS (PN-ICP-MS) for calibration purposes. The synthetic standard was characterized through 30 random spot analyses, demonstrating a homogeneity of approximately 5%. Using this synthetic standard, a reliable analytical method was developed, achieving limits of detection (LODs) ranging from 0 to 0.42 μg g<small><sup>−1</sup></small>. The method's accuracy, with relative deviations between −8.33% and 0 and correlation coefficients (<em>R</em><small><sup>2</sup></small>) greater than 0.99, confirms its reliability. Additionally, elemental distribution differences observed across various zones in a real UA stone suggest that this method offers a promising approach for the precise analysis of elemental concentrations in UA stones.</p>","PeriodicalId":64,"journal":{"name":"Analytical Methods","volume":" 2","pages":" 246-255"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Methods","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ay/d4ay01440e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate determination of elemental concentrations in uric acid (UA) stones is crucial for understanding their formation process. However, the lack of matrix-matched calibration standards has limited the application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in this field. This study addresses this limitation by preparing a synthetic UA precipitate (UA-1) doped with 17 elements using a recrystallization method. Reference concentrations of these elements were measured using pneumatic nebulization-ICP-MS (PN-ICP-MS) for calibration purposes. The synthetic standard was characterized through 30 random spot analyses, demonstrating a homogeneity of approximately 5%. Using this synthetic standard, a reliable analytical method was developed, achieving limits of detection (LODs) ranging from 0 to 0.42 μg g−1. The method's accuracy, with relative deviations between −8.33% and 0 and correlation coefficients (R2) greater than 0.99, confirms its reliability. Additionally, elemental distribution differences observed across various zones in a real UA stone suggest that this method offers a promising approach for the precise analysis of elemental concentrations in UA stones.