Stochastic to Deterministic: A Straightforward Approach to Create Serially Perfusable Multiscale Capillary Beds.

IF 5.4 2区 医学 Q2 MATERIALS SCIENCE, BIOMATERIALS
Michael J Donzanti, Bryan J Ferrick, Omkar Mhatre, Brea Chernokal, Diana C Renteria, Jason P Gleghorn
{"title":"Stochastic to Deterministic: A Straightforward Approach to Create Serially Perfusable Multiscale Capillary Beds.","authors":"Michael J Donzanti, Bryan J Ferrick, Omkar Mhatre, Brea Chernokal, Diana C Renteria, Jason P Gleghorn","doi":"10.1021/acsbiomaterials.4c01247","DOIUrl":null,"url":null,"abstract":"<p><p>Generation of <i>in vitro</i> tissue models with serially perfused hierarchical vasculature would allow greater control of fluid perfusion throughout the network and enable direct mechanistic investigation of vasculogenesis, angiogenesis, and vascular remodeling. In this work, we have developed a method to produce a closed, serially perfused, multiscale vessel network fully embedded within an acellular hydrogel, where flow through the capillary bed is required prior to fluid exit. We confirmed that the acellular and cellular gel-gel interface was functionally annealed without preventing or biasing cell migration and endothelial self-assembly. Multiscale connectivity of the vessel network was validated via high-resolution microscopy techniques to confirm anastomosis between self-assembled and patterned vessels. Lastly, using a simple acrylic cassette and fluorescently labeled microspheres, the multiscale network was demonstrated to be perfusable. Directed flow from inlet to outlet mandated flow through the capillary bed. This method for producing closed, multiscale vascular networks was developed with the intention of straightforward fabrication and engineering techniques so as to be a low barrier to entry for researchers who wish to investigate mechanistic questions in vascular biology. This ease of use offers a facile extension of these methods for incorporation into organoid culture, organ-on-a-chip (OOC) models, and bioprinted tissues.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01247","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Generation of in vitro tissue models with serially perfused hierarchical vasculature would allow greater control of fluid perfusion throughout the network and enable direct mechanistic investigation of vasculogenesis, angiogenesis, and vascular remodeling. In this work, we have developed a method to produce a closed, serially perfused, multiscale vessel network fully embedded within an acellular hydrogel, where flow through the capillary bed is required prior to fluid exit. We confirmed that the acellular and cellular gel-gel interface was functionally annealed without preventing or biasing cell migration and endothelial self-assembly. Multiscale connectivity of the vessel network was validated via high-resolution microscopy techniques to confirm anastomosis between self-assembled and patterned vessels. Lastly, using a simple acrylic cassette and fluorescently labeled microspheres, the multiscale network was demonstrated to be perfusable. Directed flow from inlet to outlet mandated flow through the capillary bed. This method for producing closed, multiscale vascular networks was developed with the intention of straightforward fabrication and engineering techniques so as to be a low barrier to entry for researchers who wish to investigate mechanistic questions in vascular biology. This ease of use offers a facile extension of these methods for incorporation into organoid culture, organ-on-a-chip (OOC) models, and bioprinted tissues.

从随机到确定:创建可连续灌注的多尺度毛细管床的简单方法。
生成具有连续灌注分层血管的体外组织模型可以更好地控制整个网络的液体灌注,并能对血管生成、血管形成和血管重塑进行直接的机理研究。在这项工作中,我们开发了一种方法,用于制造完全嵌入无细胞水凝胶中的封闭、连续灌注的多尺度血管网络,在该网络中,液体流出之前需要流经毛细血管床。我们证实,无细胞和细胞凝胶-凝胶界面在功能上已退火,不会阻止或影响细胞迁移和内皮自组装。血管网络的多尺度连通性通过高分辨率显微镜技术进行了验证,以确认自组装血管和图案化血管之间的吻合。最后,利用一个简单的丙烯酸盒和荧光标记微球,证明了多尺度网络是可灌注的。从入口到出口的定向流动强制流经毛细管床。开发这种生产封闭式多尺度血管网络的方法的目的是采用简单的制造和工程技术,从而为希望研究血管生物学机理问题的研究人员提供一个较低的入门门槛。这种易用性为这些方法的扩展提供了便利,可将其纳入类器官培养、芯片上器官(OOC)模型和生物打印组织中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Biomaterials Science & Engineering
ACS Biomaterials Science & Engineering Materials Science-Biomaterials
CiteScore
10.30
自引率
3.40%
发文量
413
期刊介绍: ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics: Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信