Activation of PAA at the Fe-Nx Sites by Boron Nitride Quantum Dots Enhanced Charge Transfer Generates High-Valent Metal-Oxo Species for Antibiotics Degradation.

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
环境科学与技术 Pub Date : 2024-12-10 Epub Date: 2024-11-28 DOI:10.1021/acs.est.4c08224
Shuo Li, Yalun Yang, Junfeng Niu, Heshan Zheng, Wen Zhang, Yoong Kit Leong, Jo-Shu Chang, Bo Lai
{"title":"Activation of PAA at the Fe-N<sub><i>x</i></sub> Sites by Boron Nitride Quantum Dots Enhanced Charge Transfer Generates High-Valent Metal-Oxo Species for Antibiotics Degradation.","authors":"Shuo Li, Yalun Yang, Junfeng Niu, Heshan Zheng, Wen Zhang, Yoong Kit Leong, Jo-Shu Chang, Bo Lai","doi":"10.1021/acs.est.4c08224","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced oxidation processes (AOPs) based on peracetic acid (PAA) offer a promising strategy to address antibiotic wastewater pollution. In this study, Fe-doped graphitic carbon nitride (g-C<sub>3</sub>N<sub>4</sub>) nanomaterials were used to construct Fe-N<sub><i>x</i></sub> sites, and the electronic structure was tuned by boron nitride quantum dots (BNQDs), thereby optimizing PAA activation for the degradation of antibiotics. The BNQDs-modified Fe-doped g-C<sub>3</sub>N<sub>4</sub> catalyst (BNQDs-FCN) achieved an excellent reaction rate constant of 0.0843 min<sup>-1</sup>, marking a 21.6-fold improvement over the carbon nitride (CN)-based PAA system. DFT calculations further corroborate the superior adsorption capacity of the Fe-N<sub><i>x</i></sub> sites for PAA, facilitating its activation. Charge transfer mechanisms, with PAA serving as an electron acceptor, were identified as the source of high-valent iron-oxo species. Moreover, the BNQDs-FCN system preferentially targets oxygen-containing functional groups in antibiotic structures, elucidating the selective attack patterns of these highly electrophilic species. This research not only elucidates the pivotal role of high-valent iron-oxo species in pollutant degradation within the PAA-AOPs framework but also pioneers a wastewater treatment system characterized by excellent degradation efficiency coupled with low ecological risk, thereby laying the groundwork for applications in wastewater management and beyond.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":" ","pages":"21871-21881"},"PeriodicalIF":10.8000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c08224","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced oxidation processes (AOPs) based on peracetic acid (PAA) offer a promising strategy to address antibiotic wastewater pollution. In this study, Fe-doped graphitic carbon nitride (g-C3N4) nanomaterials were used to construct Fe-Nx sites, and the electronic structure was tuned by boron nitride quantum dots (BNQDs), thereby optimizing PAA activation for the degradation of antibiotics. The BNQDs-modified Fe-doped g-C3N4 catalyst (BNQDs-FCN) achieved an excellent reaction rate constant of 0.0843 min-1, marking a 21.6-fold improvement over the carbon nitride (CN)-based PAA system. DFT calculations further corroborate the superior adsorption capacity of the Fe-Nx sites for PAA, facilitating its activation. Charge transfer mechanisms, with PAA serving as an electron acceptor, were identified as the source of high-valent iron-oxo species. Moreover, the BNQDs-FCN system preferentially targets oxygen-containing functional groups in antibiotic structures, elucidating the selective attack patterns of these highly electrophilic species. This research not only elucidates the pivotal role of high-valent iron-oxo species in pollutant degradation within the PAA-AOPs framework but also pioneers a wastewater treatment system characterized by excellent degradation efficiency coupled with low ecological risk, thereby laying the groundwork for applications in wastewater management and beyond.

氮化硼量子点增强电荷转移在 Fe-Nx 位激活 PAA,产生高价金属氧化物用于抗生素降解。
基于过乙酸(PAA)的高级氧化工艺(AOPs)为解决抗生素废水污染问题提供了一种前景广阔的策略。本研究利用掺杂铁的氮化石墨碳(g-C3N4)纳米材料构建铁-氮基点,并通过氮化硼量子点(BNQDs)调整其电子结构,从而优化了 PAA 对抗生素降解的活化作用。氮化硼量子点修饰的掺杂铁的 g-C3N4 催化剂(BNQDs-FCN)达到了 0.0843 min-1 的优异反应速率常数,比基于氮化碳(CN)的 PAA 系统提高了 21.6 倍。DFT 计算进一步证实,Fe-Nx 位点对 PAA 具有卓越的吸附能力,从而促进了 PAA 的活化。以 PAA 作为电子受体的电荷转移机制被确定为高价铁-氧物种的来源。此外,BNQDs-FCN 系统优先针对抗生素结构中的含氧官能团,阐明了这些高亲电性物种的选择性攻击模式。这项研究不仅在 PAA-AOPs 框架内阐明了高价铁氧物种在污染物降解中的关键作用,还开创了一种降解效率高、生态风险低的废水处理系统,从而为废水管理及其他领域的应用奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信