Hybrid Strategies for Enhancing the Multifunctionality of Smart Dynamic Molecular Crystal Materials.

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chemistry - A European Journal Pub Date : 2025-01-14 Epub Date: 2024-12-10 DOI:10.1002/chem.202403293
Haoqiang Qi, Wenbo Wu, Jiaxuan Zhu, Hongtu Zhao, Hui Yu, Xin Huang, Ting Wang, Na Wang, Hongxun Hao
{"title":"Hybrid Strategies for Enhancing the Multifunctionality of Smart Dynamic Molecular Crystal Materials.","authors":"Haoqiang Qi, Wenbo Wu, Jiaxuan Zhu, Hongtu Zhao, Hui Yu, Xin Huang, Ting Wang, Na Wang, Hongxun Hao","doi":"10.1002/chem.202403293","DOIUrl":null,"url":null,"abstract":"<p><p>Dynamic molecular crystals are an emerging class of smart engineering materials that possess unique ability to convert external energy into mechanical motion. Moreover, they have being considered as strong candidates for dynamic elements in applications such as flexible electronic devices, artificial muscles, sensors, and soft robots. However, the inherent defects of molecular crystals like brittleness, short-life and fatigue, have significantly impeded their practical applications. Inspired by the concept of \"the whole is greater than the sum of its parts\" in the field of biology, building stimuli-response composites materials can be regarded as one of the ways to break through the current limitations of dynamic molecular crystals. Moreover, the hybrid materials can exhibit new functionalities that cannot be achieved by a single object. In this review, the focus was placed on the analysis and discussion of various hybrid strategies and options, as well as the functionalities of hybrid dynamic molecular crystal materials and the important practical applications of composite materials, with the introduction of photomechanical molecular crystals and flexible molecular crystals as a starting point. Moreover, the efficiency, limitations, and advantages of different hybrid methods were compared and discussed. Furthermore, the promising perspectives of smart dynamic molecular crystal materials were also discussed and the potential directions for future work were suggested.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202403293"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202403293","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/10 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dynamic molecular crystals are an emerging class of smart engineering materials that possess unique ability to convert external energy into mechanical motion. Moreover, they have being considered as strong candidates for dynamic elements in applications such as flexible electronic devices, artificial muscles, sensors, and soft robots. However, the inherent defects of molecular crystals like brittleness, short-life and fatigue, have significantly impeded their practical applications. Inspired by the concept of "the whole is greater than the sum of its parts" in the field of biology, building stimuli-response composites materials can be regarded as one of the ways to break through the current limitations of dynamic molecular crystals. Moreover, the hybrid materials can exhibit new functionalities that cannot be achieved by a single object. In this review, the focus was placed on the analysis and discussion of various hybrid strategies and options, as well as the functionalities of hybrid dynamic molecular crystal materials and the important practical applications of composite materials, with the introduction of photomechanical molecular crystals and flexible molecular crystals as a starting point. Moreover, the efficiency, limitations, and advantages of different hybrid methods were compared and discussed. Furthermore, the promising perspectives of smart dynamic molecular crystal materials were also discussed and the potential directions for future work were suggested.

增强智能动态分子晶体材料多功能性的混合战略。
动态分子晶体是一类新兴的智能工程材料,具有将外部能量转化为机械运动的独特能力。此外,它们还被视为柔性电子设备、人造肌肉、传感器和软机器人等应用中动态元件的有力候选材料。然而,分子晶体固有的缺陷,如脆性、短寿命和疲劳,严重阻碍了它们的实际应用。受生物学领域 "整体大于部分之和 "概念的启发,构建刺激-响应复合材料可被视为突破当前动态分子晶体局限性的途径之一。此外,混合材料还能展现单一物体无法实现的新功能。本综述以介绍光机械分子晶体和柔性分子晶体为切入点,重点分析和讨论了各种混合策略和方案,以及混合动态分子晶体材料的功能和复合材料的重要实际应用。此外,还比较和讨论了不同混合方法的效率、局限性和优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemistry - A European Journal
Chemistry - A European Journal 化学-化学综合
CiteScore
7.90
自引率
4.70%
发文量
1808
审稿时长
1.8 months
期刊介绍: Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields. Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world. All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times. The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems. Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信