Machine Learning Assisted Prediction of Donor Numbers: Guiding Rational Fabrication of Polymer Electrolytes for Lithium-ion Batteries.

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuqing Gao, Shengguang Qi, Mianrui Li, Tongmei Ma, Huiyu Song, Zhiming Cui, Zhenxing Liang, Li Du
{"title":"Machine Learning Assisted Prediction of Donor Numbers: Guiding Rational Fabrication of Polymer Electrolytes for Lithium-ion Batteries.","authors":"Yuqing Gao, Shengguang Qi, Mianrui Li, Tongmei Ma, Huiyu Song, Zhiming Cui, Zhenxing Liang, Li Du","doi":"10.1002/anie.202411437","DOIUrl":null,"url":null,"abstract":"<p><p>Polymer electrolytes are of interest in high-energy-density batteries. However, how the intrinsic electron-donating capability of polymer segments involved in coordination affects lithium-ion dissociation/transmission and rationally guides the design and fabrication of electrolytes is a highly exploratory topic. This study proposes a workable method that integrates machine learning with density functional theory to predict donor numbers (DN) for polymer building units. Using this approach, polymer chains with optimized DN are designed, effectively modulating the solvation structure of lithium-ion. Molecular dynamics simulations confirm the positive impact of polymer chains on rapid transport of lithium ions. Experimental validation of the proposed zwitterionic polymer electrolyte (ZPE) showcases satisfactory parameters: ion conductivity (0.59 mS cm-1), ion migration numbers (0.82), and activation energy (0.016 eV). Electrochemical analysis on Li|ZPE|Li symmetric batteries demonstrate sustained plating/stripping performance exceeding 3000 hours at a current density of 0.2 mA cm-2. Assembled NCM|ZPE|Li batteries exhibit stable cycling over 1400 cycles at 4.3 V, with a capacity retention ratio of 92.3%. Moreover, even under ultra-high voltages of 4.5 V and 4.7 V, NCM|ZPE|Li batteries display stable cycling performances. This approach offers a paradigmatic strategy for polymer molecule design, advancing sustainable battery technologies.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202411437"},"PeriodicalIF":16.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202411437","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer electrolytes are of interest in high-energy-density batteries. However, how the intrinsic electron-donating capability of polymer segments involved in coordination affects lithium-ion dissociation/transmission and rationally guides the design and fabrication of electrolytes is a highly exploratory topic. This study proposes a workable method that integrates machine learning with density functional theory to predict donor numbers (DN) for polymer building units. Using this approach, polymer chains with optimized DN are designed, effectively modulating the solvation structure of lithium-ion. Molecular dynamics simulations confirm the positive impact of polymer chains on rapid transport of lithium ions. Experimental validation of the proposed zwitterionic polymer electrolyte (ZPE) showcases satisfactory parameters: ion conductivity (0.59 mS cm-1), ion migration numbers (0.82), and activation energy (0.016 eV). Electrochemical analysis on Li|ZPE|Li symmetric batteries demonstrate sustained plating/stripping performance exceeding 3000 hours at a current density of 0.2 mA cm-2. Assembled NCM|ZPE|Li batteries exhibit stable cycling over 1400 cycles at 4.3 V, with a capacity retention ratio of 92.3%. Moreover, even under ultra-high voltages of 4.5 V and 4.7 V, NCM|ZPE|Li batteries display stable cycling performances. This approach offers a paradigmatic strategy for polymer molecule design, advancing sustainable battery technologies.

机器学习辅助预测捐赠者人数:指导锂离子电池聚合物电解质的合理制造。
聚合物电解质在高能量密度电池中备受关注。然而,参与配位的聚合物片段的固有电子捐献能力如何影响锂离子解离/传输,并合理地指导电解质的设计和制造,是一个极具探索性的课题。本研究提出了一种将机器学习与密度泛函理论相结合的可行方法,用于预测聚合物构建单元的供体数(DN)。利用这种方法,可以设计出具有优化 DN 的聚合物链,从而有效调节锂离子的溶解结构。分子动力学模拟证实了聚合物链对锂离子快速传输的积极影响。实验验证了所提出的齐聚物聚合物电解质(ZPE),其参数令人满意:离子电导率(0.59 mS cm-1)、离子迁移数(0.82)和活化能(0.016 eV)。锂|ZPE|锂对称电池的电化学分析表明,在电流密度为 0.2 mA cm-2 时,电镀/剥离性能可持续超过 3000 小时。组装好的 NCM|ZPE|Li 电池在 4.3 V 下可稳定循环 1400 次,容量保持率高达 92.3%。此外,即使在 4.5 V 和 4.7 V 的超高电压下,NCM|ZPE|锂电池也能显示出稳定的循环性能。这种方法为聚合物分子设计提供了一种范例策略,推动了可持续电池技术的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信