Optimal facial regions for remote heart rate measurement during physical and cognitive activities

Shuo Li, Mohamed Elgendi, Carlo Menon
{"title":"Optimal facial regions for remote heart rate measurement during physical and cognitive activities","authors":"Shuo Li, Mohamed Elgendi, Carlo Menon","doi":"10.1038/s44325-024-00033-7","DOIUrl":null,"url":null,"abstract":"Remote photoplethysmography (rPPG) has gained prominence as a non-contact and real-time technology for heart rate monitoring. A critical factor in rPPG’s accuracy is the selection of regions of interest (ROI), as it can significantly influence prediction outcomes. Most studies typically use the forehead and cheeks as ROIs, but little research has explored other facial regions or how stable these ROIs are during physical movement and cognitive tasks. In this study, we analyzed 28 facial regions based on anatomical definitions using two mixed datasets derived from three public databases: LGI-PPGI, UBFC-rPPG, and UBFC-Phys. We applied rPPG algorithms such as orthogonal matrix image transformation (OMIT), plane-orthogonal-to-skin (POS), chrominance-based (CHROM), and local group invariance (LGI). Our findings show that the glabella, medial forehead, lateral forehead, malars, and upper nasal dorsum consistently perform well, with the glabella achieving the highest overall evaluation score. These results offer valuable insights for advancing remote heart rate monitoring technologies.","PeriodicalId":501706,"journal":{"name":"npj Cardiovascular Health","volume":" ","pages":"1-12"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44325-024-00033-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Cardiovascular Health","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44325-024-00033-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Remote photoplethysmography (rPPG) has gained prominence as a non-contact and real-time technology for heart rate monitoring. A critical factor in rPPG’s accuracy is the selection of regions of interest (ROI), as it can significantly influence prediction outcomes. Most studies typically use the forehead and cheeks as ROIs, but little research has explored other facial regions or how stable these ROIs are during physical movement and cognitive tasks. In this study, we analyzed 28 facial regions based on anatomical definitions using two mixed datasets derived from three public databases: LGI-PPGI, UBFC-rPPG, and UBFC-Phys. We applied rPPG algorithms such as orthogonal matrix image transformation (OMIT), plane-orthogonal-to-skin (POS), chrominance-based (CHROM), and local group invariance (LGI). Our findings show that the glabella, medial forehead, lateral forehead, malars, and upper nasal dorsum consistently perform well, with the glabella achieving the highest overall evaluation score. These results offer valuable insights for advancing remote heart rate monitoring technologies.

Abstract Image

体力和认知活动中远程心率测量的最佳面部区域
作为一种用于心率监测的非接触式实时技术,远程照相血压计(rPPG)的地位日益突出。影响 rPPG 准确性的一个关键因素是感兴趣区(ROI)的选择,因为它会对预测结果产生重大影响。大多数研究通常使用前额和脸颊作为 ROI,但很少有研究探讨其他面部区域,也很少有研究探讨这些 ROI 在身体运动和认知任务过程中的稳定性。在本研究中,我们使用来自三个公共数据库的两个混合数据集,根据解剖学定义分析了 28 个面部区域:我们应用了正交矩阵图像变换(OMIT)、平面正交-皮肤(POS)、基于色度(CHROM)和局部组不变性(LGI)等 rPPG 算法。我们的研究结果表明,面颊部、内额部、外额部、颊部和鼻背上部的表现一直很好,其中面颊部的总体评价得分最高。这些结果为远程心率监测技术的发展提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信