Imaging Magma Reservoirs From Space With Altimetry-Derived Gravity Data

IF 8.3 Q1 GEOSCIENCES, MULTIDISCIPLINARY
AGU Advances Pub Date : 2024-11-26 DOI:10.1029/2024AV001403
Hélène Le Mével
{"title":"Imaging Magma Reservoirs From Space With Altimetry-Derived Gravity Data","authors":"Hélène Le Mével","doi":"10.1029/2024AV001403","DOIUrl":null,"url":null,"abstract":"<p>I investigate the detectability of magma reservoirs in the vertical gravity gradient (VGG) anomalies calculated from satellite altimetry data. First, I calculate a suite of synthetic seamount models to show the expected VGG anomaly characteristic wavelength and amplitude for a simplified magmatic system, hydrothermal system, and a caldera infill, varying their dimensions for a given depth and density contrast. I find that most magmatic and hydrothermal systems create VGG anomalies with a characteristic wavelength and amplitude greater than the data uncertainty and are therefore detectable. The proposed approach consists in three main steps: (a) calculate the VGG from the two components of the deflection of the vertical, (b) calculate and remove the gravity contribution of the bathymetry interface using an independent bathymetry data set (e.g., acquired by multibeam echosounders) to obtain a VGG Bouguer gravity anomaly, (c) invert the Bouguer VGG anomaly to obtain a 3D density model. I image a 6-by-8-km low density body between 3 and 9 km depth under Brothers volcano in the Kermadec arc. I hypothesize that it represents the main magmatic system, possibly with a minor fraction of hydrothermal fluids at the shallower depths. There are about 225 submarine volcanoes globally that could be studied with satellite altimetry-derived gravity data to potentially image their magmatic system. Future altimetry data will increase the gravity data resolution and allow us to image smaller features. This is thus an invaluable data set for the study of underexplored submarine volcanoes and can help improve our volcano hazards assessment.</p>","PeriodicalId":100067,"journal":{"name":"AGU Advances","volume":"5 6","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024AV001403","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AGU Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024AV001403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

I investigate the detectability of magma reservoirs in the vertical gravity gradient (VGG) anomalies calculated from satellite altimetry data. First, I calculate a suite of synthetic seamount models to show the expected VGG anomaly characteristic wavelength and amplitude for a simplified magmatic system, hydrothermal system, and a caldera infill, varying their dimensions for a given depth and density contrast. I find that most magmatic and hydrothermal systems create VGG anomalies with a characteristic wavelength and amplitude greater than the data uncertainty and are therefore detectable. The proposed approach consists in three main steps: (a) calculate the VGG from the two components of the deflection of the vertical, (b) calculate and remove the gravity contribution of the bathymetry interface using an independent bathymetry data set (e.g., acquired by multibeam echosounders) to obtain a VGG Bouguer gravity anomaly, (c) invert the Bouguer VGG anomaly to obtain a 3D density model. I image a 6-by-8-km low density body between 3 and 9 km depth under Brothers volcano in the Kermadec arc. I hypothesize that it represents the main magmatic system, possibly with a minor fraction of hydrothermal fluids at the shallower depths. There are about 225 submarine volcanoes globally that could be studied with satellite altimetry-derived gravity data to potentially image their magmatic system. Future altimetry data will increase the gravity data resolution and allow us to image smaller features. This is thus an invaluable data set for the study of underexplored submarine volcanoes and can help improve our volcano hazards assessment.

Abstract Image

利用测高仪得出的重力数据从太空成像岩浆储层
我研究了卫星测高数据计算出的垂直重力梯度(VGG)异常中岩浆储层的可探测性。首先,我计算了一套合成海山模型,以显示简化岩浆系统、热液系统和破火山口填充物的预期 VGG 异常特征波长和振幅,并在给定深度和密度对比下改变它们的尺寸。我发现大多数岩浆和热液系统产生的 VGG 异常的特征波长和振幅都大于数据的不确定性,因此是可以探测到的。建议的方法包括三个主要步骤:(a) 利用垂直偏转的两个分量计算 VGG,(b) 利用独立的水深测量数据集(如多波束回声测深仪获取的数据)计算并去除水深测量界面的重力贡献,以获得 VGG 布盖尔重力异常,(c) 反演布盖尔 VGG 异常,以获得三维密度模型。我在凯尔马代克弧的兄弟火山下 3 至 9 千米深处拍摄到一个 6×8 千米的低密度体。我假设它代表了主要的岩浆系统,在较浅的深度可能还有一小部分热液。全球约有 225 座海底火山,可以利用卫星测高衍生重力数据对其进行研究,从而可能对其岩浆系统进行成像。未来的测高数据将提高重力数据的分辨率,使我们能够对较小的地貌进行成像。因此,这是研究未充分开发的海底火山的宝贵数据集,有助于改进我们的火山灾害评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信